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Austern and Vincent's formalism for the inclusive breakup reactions in DWBA is rewritten in a form in which the elastic 
and inelastic breakup processes are well discernible. This form is calculable exactly and hence we test the validity of the sur- 
face approximation used by Baur et al. 

Recently inclusive breakup processes have attracted 
much interest in light- as well as heavy-ion induced re- 
actions. Banr and collaborators [ 1,2] decomposed the 
process, a + A -~ b + anything with a = b + x, into two 
parts; the elastic breakup, a + A -+ b + Xg r + Ag r (gr 
denoting the ground state) and the rest which is called 
the inelastic breakup. They demonstrated that the lat- 
ter contributed the dominant  part o f  the total  inclusive 
breakup cross sections for the A(d,  p), A(a ,  3He) reac- 
tions. Udagawa and collaborators [3] also showed that 
the inelastic breakup part dominates heavy-ion induced 
inclusive breakup reactions such as 4°Ca(2°Ne, 160), 
159Tb(14N, a), etc. They called the inelastic breakup 
breakup-fusion. 

The method of calculation of Baur et al. [ 1,2] is 
based on the post-form DWBA using the surface ap- 
proximation (SA) for the form factor and the unitar- 
i ty of  the S-matrix for the x - A  collision. This method 
was first proposed by Vincent and Fortune [4].  
Udagawa and Tamura [5] ,  on the other hand, used the 
prior-form DWBA and the on-energy-shell approxima- 
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tion for the progagator of the x - A  system (hereafter 
called the system B), starting from Kerman and 
McVoy's two-step formalism [6] and their different 
derivation [7].  Very recently Udagawa et al. [8] re- 
ported an improved calculation of  the breakup- fusion 
for the 181Ta(14N, c~) reaction without  using the on- 
energy-shell approximation.  

Recently Austern and Vincent [9] derived a closed 
formula for inclusive breakup cross sections with an 
optical-model Green's function of  the system B, start- 
ing with the post-form DWBA. They also proposed 
some exact and approximate forms which are suitable 
for numerical calculations, and discussed the relation 
with the SA of Baur et al. [ 1,2]. 

In this short note,  we first show a simple improve- 
ment of the elast ic- inelast ic  breakup decomposit ion 
of Aus te rn-Vincent ' s  formula. We secondly show that 
the expression derived is easily calculable without ap- 
proximations. The expression turns out to be very sim- 
ilar to that of  Udagawa et al. [8].  We also demonstrate 
that its connection with the SA is very transparent. 
Then, numerical calculations by this formula are car- 
ried out for the inclusive cross sections of  the inelastic 
deuteron breakup process and the validity of  the SA is 
investigated. 
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For simplicity and comparison with works of  
Austern and Vincent [9] and Baur et al. [ 1,2] we con- 
sider, as an example, the deuteron breakup process 

d + A - + p + B  c , 

where B c specifies the final channel of the system B, 
and to identify the n + Ag r channel B 0 will be used. 
We follow the terminology of Baur et al., "inelastic 
breakup-fusion", instead of  "breakup-fusion" since 
we compare our results with theirs. 

In the post-form DWBA for the proton emission, 
the inclusive breakup cross section is expressed by 
Austern and Vincent [9] as 

daincl = (270 4 S'~.,T DWBA 
ho d z~  'Xd, Pc 126(E-Ep-EBc)d3kp  

- --(2")4 Im E ! (Xk(;)(I)~c)l Vpn IX~d ) Cd*A )12 
d3kp 

~'~0d c E t - Ep - EBc 

- - - ( 2 " )  4 im (( X (+~(bd i Vpn I X( ; ) )  
nliv d 

X <qb AI(E "~ - -Ep  - -HB)  lld#A>(X(;)lVpnlX(d)d#d)}, 
(1) 

where HBq)~c) =Egc(P~c),and X(:)(o~= p, d) are fire dis- 
torted waves of  the particle a specified by the momen- 
tum ka, and qb A and q5 a are the intrinsic ground state 
wave functions of  the nucleus A and the deuteron, 
respectively. Averaging eq. (1) over energy, one obtains 
the energy-averaged cross section as 

d6 incl = --[(2n)4/ntiVd] Im(p Ian(E?n)[P) (2) 

= --[(2rr)4/nPiVd] (p IIm Gn(Etn)lP) ,  (2 ' )  

where E n = E - Ep - EAg r and 

P = (X(;) I  Vnp IX(; ) Cd ) (3) 

is the neutron source function, and 

Gn(En) = (E? n _ kn _ Un ) -  1 (4) 

is the optical-model Green's function of the neutron 
in the optical potential U n from the nucleus A. To ob- 
tain eq. (2 ') ,  the symmetry of G n is used. The expres- 
sion (2) is the closed form derived by Austern and 
Vincent [9].  From the equations 

G n = G0n + G0nUnGn , (s) 

G0 n _= (Etn _ kn ) 1 , Im G0n = --Tr~ (E n - kn) , (6) 

one can derive the identity 

Im G n = (1 + GtnUtn)[-nS(E n - kn) ] (1 + UnGn) 

+ G?n(Im Un)G n • 

Inserting eq. (7) into eq. (2 ') ,  one obtains 

(7) 

do incl - (21r)4 (pl(  1 + G t  n Utn) 6(E n - k n ) ( 1  + UnGn)]P) 
d3kp nod 

(2n)4 (P[ Gtn(Im Un)G n IP).  (8) 
ntiv d 

The neutron distorted wave is introduced as 

X(n) = (1 + GtnUtn) lkn) , (9) 

where K n I k n) = (h2k2n/2Pn)Ik n), then, the first term 
of eq. (8) is rewritten as 

( 2 n )  4 fd3kn I(plX(kn))126(E. -h2k2/2Un) 
hv d 

_ (2~')  4 
~iv d f d3k. l(X(p)×~nllVnpl×~dlCkd >12 

2 2 

X 5 E n 2Pn . (10) 

Hence one finds that the first term of the ths of  eq. 
(8) is nothing but the energy-averaged elastic breakup 
cross section, d6el/d3 k p. 

The inclusive cross section is thus decomposed into 
the elastic and inelastic parts as 

do incl = dOel + doinel . (11) 

The energy averaged inelastic breakup cross section is 
then given by 

dainel_ (2n) 4 f d3r WAr) l f Gn(r,r')p(,") d3/ 2 
d3kp rrhod 

(12) 

with Wn(r ) = - I m  Un(r ) by assuming that U n is local. 
The expression (12) is very similar to the formalism 

of Kerman and McVoy [6],  and Udagawa et al. [7,8].  
A difference is that in the present case, the interaction 
responsible for the breakup (Vnp) does not excite the 
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target A, and therefore, only the ground state compo- 
nent of the n -A  optical potential is needed without 
approximations. 

For numerical calculations, Austern and Vincent 
[9] advocate an expression 

d0 incl _ (2704 f d3kn l ( kn  IP)126(En -/~2k2/2/2r,) 
d3kp hod 

+ (2~ 7r)4 Im fp*(r)Gon(r,r')Un(r') 
zrno d 

× Gn(r' , r")p(r") d3r d3r ' d3r '' , (13) 

by inserting eq. (5) in eq. (2). Due to the short range 
property of Un(r), the second integration can be read- 
ily performed. However, the integral (12) is much sim- 
pler than this integral. It is also noted that the calcula- 
tion of the elastic breakup is well established [ 10]. 
We thus recommend use of the expressions (11) and 
(12), instead of the expression (13). 

In the zero-range approximation with the finite- 
range correction [ 10], the neutron source function is 
written as 

p (r) = D O X (kp)* (cr) X~d)(r ) A (r) (14) 

where D O is the "zero-range constant" and A(r) is the 
finite-range correction factor and c = mA/(m A + mn). 
It is expanded by spherical harmonics as 

DO C C pfPnld@, kp, kd) p(r) 
7r3/2kpkdC lnmn lpld 

Ipl d ~ 
X glnmnO;)Cff lnmn(kp,kd) ,  (15) 

with 
l I d ~ 

cff ip m n(kp ' kd  ) 

=C(lpmpldmdllnmn) Ylpmp(lCp) Yldmd(k d) • 
(16) 

The Green's function Gn(r , r') is also expanded in the 
form 

Gn(r , r') 

_ 2/~n ~fl(r<)h,l(r>)~- Ylm(r) yTmO:) ' 
]/2kn 1 rr m (17) 

where j~ and h I are regular and outgoing radial wave 
functions for the potential Un, respectively. The in- 
tegral 

(rlGnP) = f Gn(r,r') p(r') d3r ' 

in eq. (12) is then expressed as 

2/lnD0 ~ r -  l Ylnmn(i) 
<rlGnP) = _ 7r3/2h2 kpkdknC Inmn 

X C l l d I ld* ~ " 
ldlp RlP (r)~/12~n (kp,kd) , (lS) 

where 

? I l d , t Rlpld(r) = J r'fln(r<) hln(r>)Pl p (r ' )dr . (19) 
0 

Finally, the inelastic cross section (12) is given by 

( d20 1 -26//d/Jp/Z2 D2~O ~ l lnmn(kp,kd) 
dEpd~p]inel 8 3 2 c 2 h kdkpk n lnmn (20) 

where 

Ilnmn (k p , kd) 

? d r W n ( r )  ~pldRlpld(r) o,  lold%. £ ~ [2( 
= 0 l "~lnrnnk~P' kd) 2 -1) 

The angle-integrated proton energy spectrum is then 
given by 

dO) ~ ( d 6  lld ( d o  l/d/pin 

l d \dEp/inel I d lpln \dEp]inel ' 

(22) 

with 

2 /~d/.tp/.tnD 0 ( dO tldlpln 6 2 2 

~pp/inel = 1~ kdkpknc 

X (2l n * 1) ? dr Wn(r)lRlpld(r)l 2 . 
0 

Now let us discuss the SA of Baur et al. from our 

(23) 
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formalism. Their assumption is that there exists a 
radius R c such that 

p~pntd(r)~O, f o r r < R  c ,  

Wn(r ) ~ 0 ,  for r > R c ,  (24) 

because of the Coulomb repulsion or the absorption 
of the proton and deuteron waves. Then the integral 
(21) turns out to be 

Ilnmn~(/Cwn(r)lfln(r)l 2dr) 

Rfc 
2 

drqJ lPnmn (k p, X hln(r)l~p~Pnld(r)r l ld ~ /¢d) 
p,a 

(25) 

Noting that the first factor is related to the partial reac- 
tion cross section O[n of the n - A  collision as 

R c  / i2kn  

f Wn(r)[Jln(r)l 2dr~ / Wn(r)[fln(r)[2dr=~#n°~ n, 
0 0 

(26) 

one notices that our formalism with the assumption 
(24) exactly leads to the SA of Baur et al. [1,2]. This 
derivation is more direct than that of Austern and 
Vincent [9] since they needed extra approximations. 
To avoid dependence on Re, Bauer et al. [1,2] modi- 
fied the second factor of eq. (25) by replacing 
f~c hln(r) by f~ r[Xln(r) -hn( r ) ]  I(Slnln - 1) where 
hn(r) is the spherical Bessel function, Xln(r) is the neu- 
tron distorted waves with angular momentum I n and 
Slnln is the S-matrix element of the elastic n + A scat- 
tering with In. 

Our final expression (20) with eq. (21) is easily cal- 
culable without the approximations Bauer et al. and 
Austern et al. used. A difficulty in calculation is poor 
convergence of the integral (19) but it can be managed 
by the technique of Vincent and Fortune [ 11 ]. 

By the present formalism we calculate the inelastic 
breakup cross sections of 93Nb(d , p) and 62Ni(d, p) 
at E d = 25.5 MeV, which Pampus et al. [2] analysed 
by the SA. For the sake of comparison we use the 
same optical parameters as they used. In fig. 1, the dou- 

2 ble differential cross section (d 6/dgZp dEp) inc l  o f  
93 Nb(d, p) calculated by the SA [2] (dotted line) is 

,oo ~E :,, ' . . . . . .  ' . . . . . . . .  

f..~-)'~ 93Nb +d 

I "~"~'~',', Eo=14.0 MeV 
0 ' )  \ k. ,  

E \, ~ 
\ \-inel ",,~, 

1 . 0  ~ % ' ,  

(et~, ~': • 

\, 
0.1 " - . . - - .  

- \ . \  / !  

I I I I I I I I I I J I I I 
0"010 90 180 

8p (deg) 

Fig. I. The double differential cross sections (d2~/dEpd~2p) 
for d + 93Nb. The dotted and the full lines denote the in- 
elastic breakup cross sections obtained by the SA of ref. [2] 
and by the present exact formalism, respectively. The d o t t e d -  
dashed line is the elastic breakup cross section. The dashed 
line and dots represent the theoretical and experimental value 
of  the total inclusive cross sections, respectively. All the re- 
sults except  the full line are taken from ref. [2].  

compared with the result obtained by the present ex- 
act formalism (full line) at Ep = 14 MeV (the maximum 
of the spectrum). The SA overestimates the cross sec- 
tion in most of the angular range, but except for the 
forward angles, the SA seems to hold reasonably well 
at this maximum cross section region of the spectrum. 
The elastic breakup (dotted-dashed line) and the 
total inclusive breakup cross sections (dashed line) cal- 
culated by Pampus et al. [2] are also plotted with the 
experimental results [2] of the latter (dots). The SA 
overpredicts the experimental result, but the exact cal- 
culation added by the elastic breakup is slightly lower 
than the experiment. At backward angles the discrep- 
ancy between the theoretical and the experimental re- 
suits is considered to be due to the compound and the 
precompound components as Pampus et al. [2] point- 
ed out. 

In fig. 2, the SA results (dashed line) are compared 
with the exact one (full line) for the angle-integrated 
proton energy spectra of the inelastic breakup process 
of 62Ni(d, p). The SA overestimates the spectrum in 
the entire energy region. It is rather good approxi- 
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Fig. 2. The angle-integrated proton spectra of the inelastic 
breakup process. The full and the dashed lines denote the 
spectra obtained by the present method and by the SA, re- 
spectively. 

mation at large Ep, but gives much larger results (even 
by factor of 2) at low Ep. 

We confirmed that the replacement f~chl [...] 
Xrdr in eq. (25)by f~(Xl-Jl) [...] d r in  the SA 
changes the angle integrated cross section only less 
than a few percent for Ep > 12 MeV where R c = 7.4 
fm is used. We compare the partial cross sections, 
(d6/dEp)lidnel, of 62Ni(d, p) in fig. 3. The sharp peak 

at I d = 10 indicates a surface-reaction character of the 
inelastic-breakup reaction at the energies considered. 

(E d = 25.5 MeV, Ep = 14 MeV). This is in contract to 
a spreading to a very wide partial wave range of the 
elastic-breakup partial cross sections which are also 
plotted (dotted line). The SA (dashed line) repro- 

duces well the exact partial cross sections for high l d 
but poor for low 1 d. 

We remark that for low-energy neutron (correspond- 
ing to high Ep), the imaginary part Wn(r ) of the neu- 
tron optical potential is surface peaked, and this is 
another reason for the surface reaction character of 
the inelastic breakup process as is seen from our for- 
malism. 

We conclude that the present DWBA breakup for- 
malism is so easily handled exactly that one needs 
not rely on the surface approximation which is good 
at high Ep but not  so good at low Ep in the present 
analysis. 

The authors thank Dr.M. Igarashi for providing sub- 
routines useful for Vincent and Fortune's method. 
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Fig. 3. The partial cross sections (do/dEp) Id. The full and 
the dashed lines denote the inelastic breakup cross sections 
calculated by the present method and by the SA, respectively. 
The dotted line denotes the elastic breakup cross section. 
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