
PHYSICAL REVIEW C VOLUME 32, NUMBER 2 AUGUST 1985

Equivalence of post and prior sum rules for inclusive breakup reactions
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A critical examination of sum rules derived previously by Austern and Vincent (post form) and by

Udagawa and Tamura (prior form) demonstrates that agreement between the two approaches is ob-

tained if certain approximations implicit in the Udagawa-Tamura prior-form derivation are avoided.

We examine the relation of the two approaches to singularities of the post-form distorted wave Born

approximation matrix element and to the procedures for reduction of a many-body theory by use of
effective operators in a model space. The two-step heuristic model is seen to be invalid for prior-

form inelastic breakup; it is necessary to take account of nuclear excitations during projectile break-

up. Careful treatment of the non-Hermiticity of kinetic energy operators with respect to continuum

wave functions is required.

INTRODUCTION

Disagreements between recent papers about inclusive
breakup raise interesting questions of understanding of
basic reaction theory Inclusi. ve breakup refers to reac-
tions of the type

a +3~b +anything,

where b is a definite fragment of the incident projectile,

a =b+x,
and the energy of b in the exit channel is low enough so
the remaining dynamical system x +2 is unbound. Thus
an inclusive experiment sums over exit channels that have
three or more bodies in the continuum. In each such
channel the final condition of the system x +A may have
x and A in their ground states [elastic breakup (EB)] or in
excited states (inelastic breakup), or there may be particle
transfer between x and A. In the work of Li, Udagawa,
and Tamura' (LUT) the sum of breakup events other than
elastic breakup is called breakup fusion (BF).

Direct reaction analyses of inclusive breakup treat b as
a spectator to the subsequent dynamics of the x +A sys-
tem. In such "two-step" approaches completeness allows
reduction of the sum over channels to a closed form
operator expression, a typical quantum mechanical sum
rule. LUT apply completeness to the prior-form deriva-
tion of the breakup cross section. They criticize a related
sum rule expression obtained by Austern and Vincent
(AV) and Kasano and Ichimura (KI), who apply com-
pleteness to the post-form derivation. The LUT criticism
is extended to papers by Baur and Trautmann and col-
laborators, whose calculational method can be regarded
as an approximation of the AV-KI theory.

Both sum rules take the form of ground state expecta-
tions of the Green's function 6 z for the interaction of
the unobserved particle x with the target nucleus, in com-
bination with various optical potential interactions. Since

the sum rules concern sums over alternative modes of de-
cay of x+2, their formal derivation requires considera-
tion of the internal coordinates of the nuclei. But these
coordinates no longer appear in the final expressions with
optical potentials. Hence an essential step in the deriva-
tion of the sum rules is the "optical reduction, " which
suppresses internal coordinates.

To obtain consistent post. and prior derivations of sum
rules, it is necessary that both approaches start from the
same many-body dynamical model and that they employ
comparable optical reductions. We show in Sec. IV that
an exact optical reduction in the derivation of the prior-
form sum rule is rather complicated, and it does not agree
with the expression discussed by LUT, which we show is
based on an approximation. From the numerical calcula-
tions given by LUT, it is clear that the discrepancy be-
tween the exact and approximate prior-form sum rules is
large. The corresponding optical reduction in the post-
form derivation in Sec. II is easier, because the post in-
teraction Vb„does not contain the coordinates of A. We
show in Sec. IV that the corrected prior-form sum rule
transforms correctly into the AV post-form sum rule; our
transformation formally resembles one given by LUT.
Thus the AV post-form sum rule is correct, and the LUT
criticisms originate from approximations in their optical
reduction.

The post-form derivation is not without its own diffi-
culties. Even on the energy shell the post-form breakup
matrix element needs a convergence factor ' to correctly
suppress long range oscillations in the integration. Off
the energy shell the disconnected structure of the matrix
element causes a delta function divergence, and this is po-
tentially more troublesome, because the derivation of the
sum rule requires some use of off-energy-shell matrix ele-
ments. We reexamine the post-form derivation in Sec. II,
and we show that the off-energy-shell divergence of the
matrix elements does not damage the sum rule.

The oscillatory integrals and off-energy-shell divergence
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of the post-form matrix element are examined in detail in
Sec. III, by a systematic transformation from the fully
connected prior-form matrix element. It is seen that these
difficulties originate from the non-Hermiticity of kinetic
energy operators with respect to continuum wave func-
tions.

All our analysis is based on one of the methods of AV,
the "operator derivation, "which explicitly sums over exit
channels of the x+3 system. The AV "wave function
derivation" is not adapted to the formal mathematics used
in Sec. II and it seems entirely inapplicable to the compli-
cations of the prior-form discussion. However, it is in-

teresting that the flux conservation equation that is cen-
tral to the wave function derivation is equivalent to an
operator identity for optical Green's functions, introduced
by KI and LUT to separate elastic breakup from breakup
fusion. This identity appears in Sec. II. Conclusions are
discussed in Sec. V.

II. POST-FORM SUM RULE

b and x are not needed, for simplicity they are not includ-
ed in our notation. However, the target nucleus ground
state wave function is written as 4q, with energy Ez, so

H, %.', =E'%.', , (2.3)

~&~=~~+& +V&~ . (2.4)

The internal eigenstate of the projectile is p, (rs„), with
energy E„where rb ——rb —r~.

A general post-form DWBA expression for inclusive
breakup to a range of outgoing momenta b,p is

Ao.

post

4

Ug

(2.2)

The 'eigenstates of the system x +A are written '0„'z, and
they satisfy

H =~~ (g)+K~+K + V ~+ Us+ Vo (2.1)

in which the interaction Vb~ of the spectator particle with
the target nucleus has been replaced by the optical poten-
tial Ub. Thus it is assumed that interactions with the
spectator particle do not cause excitations of the target
nucleus, in agreement with the two-step reaction mecha-
nism emphasized by LUT. In our model. H&(g) is the
internal Hamiltonian of the target nucleus, ECb and E„are
kinetic energy operators, and Vb~, V„~, and Vb are in-
teraction potentials —ordinarily each of these potentials
will be a sum of nucleon-nucleon interactions. For sim-

plicity the target nucleus is assumed to be so massive that
i.t remains at rest at the origin. In addition, since explicit
wave functions and Hamiltonians for the internal states of

In this section we review the AV operator derivation,
with greater emphasis on the mathematical details that
justify the manipulations used. As before we treat a
model Hamiltonian

X &(E—Eg E'), — (2.5)

for total energy E. Here we use optical wave functions
defined by

[K,+ U, (r, )]X,'+'(r, ) =(E E„E,)—X,—'+'(r, ),
[Ks+ Us(rs)]Xs (r&)=EsXs '(r&) .

(2.6)

(2.7)

A. Sum rule derivation

The inclusive sum on c is performed by the steps

The post-form residual interaction in (2.5) takes the sim-
ple, Hermitian form V~„, both because other interactions
in H are included in the definition of the exit channel
wave functions, and because of the choice Us for the
spectator-nucleus interaction. Use of the more fundamen-
tal interaction Vs& in (2.1) instead of U~ would require an
additional term Vb~ —Ub in the residual interaction; with
this term present an orderly sum rule would be unlikely.

&o —(2m)
Im X &X."'4.+.

I V~. I
X~-'K. &(E+—E.—E )-'&~„„Xs(-)

i V,„ i
X~+~~.~, &,C (2.8)

—(2m )
1m&X.'"4.+. I V~. IX& ')(E+ —Eh —~„,)-'(X,'-'i v,„ iX.'+'y. c „&, (2.9)

where in (2.9) the energy denominator of (2.8) is replaced
by its operator equivalent, using quantum mechanical
completeness. Because Vb and the optical wave func-
tions in (2.9) do not depend on internal coordinates of the
target nucleus, the @~ expectation in (2.9) allows an opti-
cal reduction of the Careen's function

(e„ i(E+ E„H„„) 'ie, )=(E„+ —K. —U. ) '= G. , — — -—

Ao.

.post

—(2n )
Im&p, (r ) IG lab«)&, (2.1 1)

with the source function

where: E Eb Ez and U is—th—e Fesh—bach formal
optical potential for particle x. Then

(2.10) pg, ( )=—(Xs 'i Vb„ iX,'+'p,
& . (2.12)
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The optical reduction (2.10) is a formally exact result.
In a typical derivation ' the product expression

hcr
~ BF

&Pb I
6 W 6 Ipb& . (2.21)

Z (g,r„):(E—+ Eb—H»—~ ) '4~ (g)p(r» )

is converted into a differential equation

(E Eb—H„—~ )Z =C'~p

By use of projection operators

P= ~e„&&+, ~, Q=l —P,

(2.13)

(2.14)

(2.15)

the differential equation for Z is converted into coupled
equations for PZ and QZ, which are solved to give

G„=G (1+U„G„)

=(1+GtUt)Go(1+ U„G„)—6„'UJG„,

6 =(1+6»U»)Go

+ 6» U» )Go(1+ U 6» )—6» U» 6»

(2.17a)

(2.17b)

in which Go is the free Green s function for particle x at
energy E„. By subtraction of these equations,

[E—Eb —PH»~P

—PH„z Q (E+ Eb —QH»w —Q) QH„z P]PZ =4'&P

(2.16)

The left-hand side of (2.16) defines an effective interaction
U„, which appears in (2.10) in the associated Green's
function 6„. It is important to recognize that the opera-
tor U„ in the sum rule originates from this optical reduc-
tion.

A helpful transformation' ' of the Green's function in
(2.11) is obtained from the adjoint pair of equations

Equations (2.20) and (2.21) express the AV-KI result.
The transformation from (2.11) to (2.20) and (2.21)

expresses the operator ImG„ in terms of the quantities
W„and ImGo, whose properties are known more fully.
In particular, although W» is the imaginary part of a for-
mal optical potential, and it can be quite complicated, it is
helpful in (2.21) that W„ is real and has finite range.

Transformation (2.18) has an interesting physical inter-
pretation, in that the expectation of the two sides of this
equation with respect to

~ pb & gives the flux conservation
equation (17) of the AV wave function derivation. Thus
(2.18) separates the total breakup flux into its component
parts. This separation is possible only because in the
model discussed breakup takes place by an interaction Vb„
that does not excite the target nucleus. The prior-form
discussion is more complicated, as we see in Sec. IV.

B. Convergence questions

Several steps in the above derivation require more care-
ful discussion. It was already noted by AV that (2.11) is
the imaginary part of an expression whose real part is in-
finite. This divergence arises from a disconnected part of
the post-form matrix element, which we discuss in detail
in Sec. III. Transformation (2.18) isolates the disconnect-
ed diagram in the EB part of the cross section, so that it
does not appear in (2.21).

The post-form breakup matrix element in (2.5) is in-
herently poorly convergent. Because Vb»(rb») and p, (rb»)
have the same argument, there is no natural cutoff of the
r„ integration. To overcome this problem Huby and
Mines and Vincent introduce a convergence factor, so
that the matrix element in (2.5) is interpreted as

Im 6„—=—(6„—6„)1

2l
&P»~ ~Pb(r»)C'g&—= »m &P'»~ ~Pb CA&

a~0+
(2.22)

=(1+G„U„)ImGo(1+ U„G„)+G„W„G„,

ImGo= —~5(E» E») . (2.19)

Upon substitution in (2.11), the first term of (2.18) yields
exactly the post-form DWBA total cross section for elas-
tic breakup. Thus (2.11)becomes

(2.18)

in which W„ is the imaginary part of U„. The first term
on the right-hand side (RHS) of (2.18) is a product of
wave operators with incoming boundary conditions for
the motion of particle x under the distorting potential U„,
multiplied by an energy-conserving operator delta func-
tion,

pb =e pb(r ) . (2.23)

For physically possible transitions (i.e., on the energy
shell), the r„dependence of the integrand in the left-hand
side (LHS) of (2.22) oscillates with zero mean at large r„,
and therefore the RHS of (2.22) has a well defined limit.
A minimum rate of oscillation of the matrix element is
determined by the binding energy of P, . A complete defi-
nition of (her/bp)~„, should use the RHS of (2.22) for the
matrix element in (2.5). Further discussion of the basis
for this convergence procedure appears in Sec. III.

Rather than immediately set a —+0+ in (2.5), we can
carry a&0 through the manipulations that lead to (2.21).
With a&0 the various integrations are finite, and we ob-
tain a reliable, cx-dependent breakup fusion cross section

her

post

- EB - BF
Acr Acr+

post p post

(2.20)

(a)

hp

4

&Ug
(2.24)

in which the "breakup fusion" cross section (see the Intro-
duction) incorporates all processes other than elastic
breakup. %'e see

We can now inquire whether the a~0+ limit of the
mathematically reliable expression (2.24) equals the BF
part of the physical sum (2.5), in which the a~0+ limit
is performed before summation.
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Interchange of the order of limits is acceptable if the
a~0+ limit is uniform with respect to the variables in
the subsequent limiting operations. Only two operations
are questionable. One is the g, summation over breakup
channels of the x +A compound system, which implies
integration over the energy sharing and angle dependence
of the breakup into two or more particles in various parti-
tions. Although the rate of oscillation of the breakup ma-
trix element at large r„ is affected by these channel vari-
ables, the asymptotic wave number of the oscillation is
seen to be bounded away from zero by a minimum value,
independent of exit channel. Therefore the a~0+ limit
is uniform with respect to the channel variables in the g,
sum.

The other questionable operation is the application of
the Green's function G„ to the source function pb

' in
(2.24),

We conclude that the mathematical definition of (2.21)
as the a~0+ limit of (2.24) is sound. The finite imagi-
nary part in (2.11) is correctly separated from the diver-
gent real part.

~~. =&&b' '+:.
I

Vb i&'+'O. +.& . (3.1)

To exhibit the disconnected part of (3.1) it is sufficient to
consider the simple matrix element for elastic breakup

'r,.„=&X' 'X„' '~ V„~X.'+'y. &, (3.2)

III. SINGULARITIES OF THE POST-FORM
MATRIX ELEMENT

We already noted that the post-form inclusive breakup
calculation involves marginal convergence of the individu-
al post-form breakup matrix element

6 ()r 3p (2.25)
in which the projection

(3.3)
which defines an a-dependent function of r„. This opera-
tion would seem to be in doubt in the limit +~0+, be-
cause in this limit the longest range part of the source
function is asymptotically proportional to a plane wave

pb(r )-expir„.(k, kb)—
here k, and k~ are the asymptotic momenta of the dis-
torted waves. However, the a~0+ behavior of (2.25) is
controlled by the factor W„' in (2.24), which establishes a
finite range for r„ in (2.25); this tells us that at asymptoti-
cally large values of r„' the r„' dependence of 6„ is
governed by a definite wave number k„, determined by
E„=Pi k„/2m„. From the on-energy-shell energetics of
breakup we then have k„&

~
k, kb ~, and theref—ore the

a~O limit of (2.25) is uniform with respect to r„. The
a~0+ limit of (2.24) can therefore be taken inside the
scalar product.

has defined an elastic distorted wave for fragment x,
governed by U through the equation

(&„+U„)X„=E„X„ (3 4)

In (3.3) the superscript co labels the elastic channel that
consists asymptotically of incoming waves plus 4q times
a plane wave in r„.

In a configuration space analysis, (3.2) has singularities
if for certain combinations of momenta the contributions
from asymptotic regions of space are unbounded. The
disconnected singularity occurs because Vb„(rb„) and
p, (rb„) have the same argument, therefore there is no
natural cutoff of any other, independent variable that
enters the integration. This effect is dominated by the
longest range part of the integrand, the plane wave part,
which we calculate in rb„,r variables by the procedure

(3.5)

r

~
~

0f d rb„d r„e e " "Vb„g,e ' '=(2m) 5(k, kb —k„)f d —rb„Vb„p, expirb„k, kb—
771~

/~—:(2n) 6(k, kb —k„)Vb„g,—. (3.6)

The 5 function divergence is suppressed on the energy
shell, when a cross section is computed, because momen-
tum conservation from the 5 function is not compatible
with energy conservation for the breakup products b, x of
projectile a. But even on the energy shell, the scattered
wave terms in the distorted waves in (3.2) cause additional
effects, such as the familiar long range oscillations of the
integrand, and these must be dealt with by some limiting
procedure.

A more complete treatment of the post-form singulari-
ties is obtained by starting with the prior-form matrix ele-
ment, which has no disconnected parts, and transforming
it to post form. The prior-form counterpart of the matrix
element in (2.5) is

p~o~= &&b PxA I Ub+ VxA Ua I &.'+'4. @g & (3.7)

Using the Schrodinger equation for the entrance channel,
(3.7) becomes

~...,=&X,' '+„', ~a, +V„„+~„+~,
+ Vb + Ub —E

~
X,'+ 'P, 4„&,

(3.g)

where E is now the total energy in the entrance channel.
The total energy in the exit channel is E~. On the energy
shell E =Ep ——E, as in the previous section; however, in
the present off-energy-shell discussion we allow E~gE~.
To recover T~„, the operators in (3.8) are applied to the
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left, taking due note that kinetic energy operators are not
Hermitian with respect to continuum wave functions. We
obtain

( ) ikb rb —ikb~b
Xb e +fbe Irb

( ) ik„r„—ik„r„X„~e " "+f„e ""/r„,
(3.14b)

(3.14c)

T „„=(X'b "Il„'g
I
Vb„+EP E——K

I X,'+ '$, 4&g ),
(3.9)

=T,.„+&x,' 'e„',-IE,—E.—KIX.'+'P. +, &,

(3.10)

with

&0i I
K

I 42& —= «@i I 4z& —&Wi I
&A& (3.1 1)

Again, it is of interest to examine elastic breakup, for
which (3.10) becomes

T,'„'.,=T,".,„+(X,'-'X„'-'
I E, E.—K—IX.'+'P. ) .

—surface integral, (3.13)

in which it is understood that the remaining volume in-
tegrals are limited to the specified bounded region. In the
surface integral asymptotic forms of the scattering wave
functions

{+) I~ 'r~ ik r
Xu ~e ' '+f, e ' '/r, , (3.14a)

(3.12)
Both terms on the RHS of (3.12) lead to oscillatory in-
tegrals and off-energy-shell singularities, hence they must
be discussed by some kind of limiting procedure.

Since the integrand of Tp„„ is localized within a finite
volume of configuration space, one obvious way to control
the singularities on the RHS of (3.12) is to restrict all the
integrals to a large but finite region of space. By use of
Green's theorem the kinetic energy correction term is
transformed to a surface integral over the boundary of the
integration region. We get

T;.'.,= T;:„+&x,'-'x„'-'
I E,—E. I X.'+'y.

&

r~
+(2~) 5(k, kb —k—„)Vb„g, , (3.16)

using the differential equations for the bra and ket in
(3.1S), followed by (3.6).

The next most important parts of the surface integral
have products of two plane wave terms from (3.14) and
one scattered wave. It is seen by calculation that these
contributions are finite, and they usually are oscillatory
functions of the radius R of the bounding surface, with
zero mean. Finiteness is obtained because the scattered
wave term decreases as R ', and because the associated
angle integral over a product of two plane waves is pro-
portional to a spherical Bessel function, which contributes
another R ' factor. Oscillations occur because, except at
unphysical combinations of momenta, energetics con-
strains the relevant wave numbers not to add to zero. All
remaining parts of the surface integral vanish in the limit
R —+ ap.

The parts of (3.12) that survive at large R are

can be used. The substitutions (3.14) are inserted simul-
taneously for all the wave functions in the surface in-
tegral, since the factor p, in (3.12) compels rb and r„ to
be simultaneously large.

The plane wave and scattered wave terms of (3.14)
make very different contributions to the surface integral.
The leading contribution at large radii comes from the
product of three plane waves. Again using Green's
theorem, this part of the surface integral is transformed
back to the plane wave volume integral

(e b "e ""IKIe ' 'P, ), (3.15)

which becomes

T',.'„=T,'„'., +(2~)'gk. —k, —k„)vb„y. +(E.—E,)((x',-'x„'-' IX.'+'y. ) —(e' ' "e' " '"
I

e' ' "y.) )

+finite surface terms . (3.17)

Equation (3.17) displays the structure of the poorly con-
vergent parts of the second term of (5.12), which originate
from the non-Hermiticity of the kinetic energy operator in
the prior-post transformation. Since T~~„ is well
behaved, the divergences simply carry through into Tz„„
in the form of the oscillations and off-energy-shell singu-
larities we have previously discussed. Of course the am-
plitudes have other off-energy-shell singularities, like the
well-known "stripping pole, " which occur in both Tp„,
and T~~„. In any case if E~ E the divergent t——erms in
(3.17) disappear and the remaining finite surface terms are
reliably oscillatory. These oscillatory contributions vanish
if the limit R ~~ is performed using a convergence fac-
tor that averages their momenta. ' This well-known

EB ~EB
Tpost, c Tprior ~ (3.18)

in agreement with usual practice.
Our specialization to elastic breakup does not limit the

analysis of the post-prior transformation. From the elas-
tic analysis we recognize that the second term of (3.10) al-
ways vanishes on the energy shell, using momentum
averaging. This transformation gives the standard result

i

averaging is equivalent to the use of wave packets for the
incident and observed particles. Let us use a subscript C
to indicate use of a convergence factor to suppress oscilla-
tions in the calculation of T~„,. Then the on-energy-shell
transformation obtained from (3.17) is
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(y( )q„'„
I v,„lx.(+)p.c»)c

—(y' '@'„
I V„„+Ub —U, I X,+ (t, @~ ) . (3.19)

The transformation also confirms the relation between the
particular residual interactions that are appropriate in the
post and prior DWBA matrix elements. Off the energy
shell the transformation for nonelastic amplitudes is a lit-
tle different from (3.17), because %"z now does not have a
plane wave ground state projection. This suppresses the 5
function in (3.17).

Although quantum mechanical manipulations with

Tp t may seem to threaten uncontrolled contributions
from the above off-energy-shell divergences, the conver-
gence analysis in Sec. II shows that this problem does not
affect the sum rule extracted in this paper.

IV. PRIOR-FORM SUM RULE

X5(E EI, ——E'),

with the residual interaction

(4.1)

V =Vg+Ub —U (4.2)

The inclusive sum on c begins with the usual steps:

The general prior-form DWBA inclusive cross section
derived from the Hamiltonian (2.1) is

Ao.

prior

4

Imp (X(.+)(().e&
I

V IX((, )q.'& &(E+—E~ —E')
GATV~

&y.'+'y. e,
I V.'Ix' ')(E+ E H. ) —'(»' —'I v I&'+'(t'. + &.

&Vg

(4.3)

(4.4)

We rewrite (4.4) as

Ap prior

4

( (+)y
I I

(+)y )
&Vg

(4.5)

Insertion of V for V~ in (4.4) allows &bq to pass through
the matrix elements to the Green's function, so that the
optical reduction of (2.10) can be applied. The resulting
approximate prior-form sum rule becomes

- LUT
where

B=—(e~
I

v~ Iyf, ')(E+ Eg, H»g) '(XI,——'I v~
I
eg)

ho.

prior

—(2n )
Im&s.

I
G Is. &

&V~
(4.8)

(4.6)

v. =v„„+Ub U. =(c„
I v„„ I

—c„)—+Ub U. . —(4.7)

is introduced for later discussion. In the above equations
we note particularly that V &V, because the optical po-
tentials in V~ are not Hermitian. Furthermore, V~& in
V~ depends on the internal coordinates of the target nu-
cleus, and this prevents an immediate optical reduction of
the Crreen's function in (4.4), as in Sec. II.

At a corresponding stage of analysis Udagawa and
Tamura' argue that V~ is primarily responsible for pro-
jectile breakup, that target nucleus excitation tends to
occur as a "second step. " This physical model suggests an
approximation in which V~ is replaced by its ground state
expectation

with a source function

P. =(&'b 'I v~+ Ub U. I&'+'0" —
& . (4.9)

This approximate expression is identically the starting
point of the LUT paper.

In our analysis the effect of V„z in V is calculated ex-
actly by rearranging (4.4) before carrying out the ground
state expectation. Using (2.4) we rewrite V as

V =(~»~+Eh E+)+(UI Ua —H~ —I('» ——E~+—E+»
(4.10)

so that the first term of (4.10), which incorporates V»~,
commutes with Xb and combines with the Green's func-
tion. The second term of (4.10) commutes with Nz. The
ground state expectation in (4.6) then yields

&=(U(, Ug I( +E —) I&I,—')(E»+ —&» —U») '(&I, I(U(, —U —&»+E )

+ I&b )(~ —v~ E)(&( I+(Ua —&b)l&b )(&'b I—+ I» )(&b I(Ua U(»— (4.1 1)

where again E =E E(, E~. As bef—ore, the form—al optical potential U„ in (4.11) is generated by the optical reduction.
Equation (4.11) is converted to a more familiar form by another step of rearrangement, like (4.10), to eliminate (E„—I(.» )

from the numerator of the first term. We get

& =(&b —U. + U») I&(, )«» & U») '(&'),
I
(—U) —Ua+ U. )+ I &b )(—U» V»~)(+b

It is convenient to express (4.12) as
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g =(U„+U„U. )'
I

Z(b- )(E„+ I—C„U—„) '(-X(b '
I
(Ub+ U. U—.)

+2;IV„ Izb' ')(Z„+—Z„—U. )-'(~'b 'I(»+U. —U. )+ l~b ')(U- —V..)(~b 'I (4.13)

Substitution in (4.5) gives the exact prior-form breakup
sum rule,

(Im(p,'
I
G„

I p,')
prior

- BF
ho.

prior

4

((p,' I G„w„G„
I p,')

7TUg

+2Re(n
I

IV„G Ipg)

+2Re&n
I
W„G„ lp.'& +(n

I W„
I
n)) . (4.17)

+ ( n
I

O'„
I

n ) ), (4.14) The relation between (4.17) and the post-form BF cross
section of (2.21) is obtained with a second identity,

with G
I
p'&=G

I pb& —In& (4.18)

I

n ( r„)) = (x'b
I x,' 'Q, ),

I p.'(r„)) =(X(b )
I

U, + U„—U.
I
X(.+)p. ) .

(4.15)

(4.16)

To get the third term of (4.14) we note that V„~ is real, so

Although the first term of (4.14) resembles the LUT
sum rule, the remaining terms are new. But even the first
term differs from LUT, since p', contains U„where in
their pz LUT have V„q.

Further understanding of (4.14) is obtained by the suc-
cessive application of two identities. In the first step
transformation (2.18) is applied to the first term of {4.14),
to extract from it the inclusive elastic breakup (EB) cross
section. The remaining inclusive BF cross section then is

related to one used by LUT. Insertion of (4.18) in (4.17)
immediately yields (2.21). Thus the post and prior expres
sions for inclusiue breakup are equivalent, both at the level
of the individual many-body matrix elements of (2.5) and
(4.1), and at the level of the formal sum rules (2.21) and
(4.17),

%e examine the identities used above: Transformation
(2.18) decomposes the prior-form inclusive cross section
into two parts

r - EB ~ BF
ho. Ao. Ao.

prior a prior ~ prior

of which the BF part is given already as (4.17). The EB
part of (4.14) is obtained as

- EB
4

(p.' I
(I+G.'U„') I G,(1+U„G„)

I p.')
, prior

4
( —) ( —) (+) 2 . kxX l&~b '~.' '{k.)IU. +U, ~. l~.(+)y. ) I'~ E„—

Ug
(4.20)

It is important to recognize (4.20) as the correct, physical
elastic-breakup cross section. At a more basic level, the
many-body DWBA matrix element for elastic breakup is
known to be

&&b '+x~
I V+~+ Ub Ua I&'+'4'a—C'~ & (421)

where co labels the elastic channel, as in (3.3). We simpli-
fy {4.21) by the familiar exact relation

(4.22)

and obtain (4.20). Use of V„z in (4.20) instead of U„
would produce an incorrect expression for the EB cross
section.

«+ Vb. + U. E)X.'+'y. =0, —

++Ub+ U —E)G (r, r.')X'+'( —k, ,r, )

(4.23a)

gives

= —&(r r' )&b+'( kb r—b), (4.23—b)

Identity (4.18) formally resembles a post-prior transfor-
mation given by LUT. %'e present an independent deriva-
tion, both because of physical differences in the interac-
tions used, and to examine a possible role of surface
terms. Thus, cross multiplication and subtraction of the
differential equations
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G.(&r' '~ Vb +U. U—b U—. K—I&'+'p. &= ln&

(4.24)

where we recall

&b '*(kb rb) =&b+'( k—b rb)

Equation (4.24) is equivalent to (4.18), with an extra non-

Hermiticity correction K. It was already seen in Sec. III
that the K term can be converted into a surface integral,
whose value depends on details of the continuum wave
functions. One of the wave functions in (4.24) is

G„(r„,r„'), an asymptotically outgoing function of r„' if r„
is finite, with no asymptotic plane wave part. With one
wave function of that structure, the surface integral must
be finite and oscillatory. It vanishes if any slight averag-
ing of momenta is performed, as by one of the familiar
convergence procedures. We conclude that (4.18) is justi-
fied. It is also clear in (4.24) that the prior interaction
Ub+ U„—U, in p,

' transforms into the post interaction
Vb„ in pb.

no surprise. In the prior interaction V ~ is symmetrical
in its relation to the nuclei a, A. If it disrupts the struc-
ture of one of them, we must suppose it simultaneously
has an equally strong effect on the other.

We are also reminded that a reduced theory of a many-
body system, in terms of the coordinates of only a few
"active" particles, requires the careful introduction of ef-
fective interactions. In the present case the many-body
operator

Va = Vx~+ Ub —Ua

is not reduced to the coordinates of particles b and x
merely by calculating its expectation with respect to 4z.
We must instead ask how V enters in the original many-
body theory. The analysis generates several reduced
terms; these contain the effective operator U . Another
example of this concern appears in the prior-form matrix
element for elastic breakup, discussed in connection with
(4.17)—(4.19). Here again the many-body matrix element
(4.18) is not reduced merely by replacing V„q by the fold-
ed interaction V„z. Again in this simple case the correct
reduced replacement for V z is the optical potential U„.

V. CONCLUSIONS

The most immediate conclusion is that the post and pri-
or inclusive breakup theories are equivalent, both at the
level of the initial summed cross section expressions and
at the level of closed-form ground state expectations.
Despite a variety of interesting complications in the post-
form analysis, the key to equivalence is the correction of
several approximations in the basic prior-form sum rule
derived by Udagawa and Tamura' and used by LUT.
These corrections should cause improvements in the com-
parisons with experimental data discussed by those au-
thors.

As is usual with sum rules, the simplicity of the
closed-form expressions, especially in post form, is a little
deceiving. In the present case we must keep in mind that
U„ in our derivation is a complicated formal operator, as
in (2.16), both nonlocal and a fluctuating function of ener-

gy. In practical applications the energy average of U„ is
replaced by the empirical optical potential for particle x.
Too much should not be expected. Also it should not be
forgotten that the sum rule derivations ignore excitations
of the target nucleus by the spectator particle b, though of
course the effect of virtual excitations of the target on the
motion of b is included in Ub.

Several basic lessons about reaction theory emerge. One
concerns the two-step physical model emphasized by
LUT, who picture breakup and target nucleus excitation
as disjoint events. We see that this heuristic model does

correspond to the mathematical formulation of the post-
form calculation, but not of the prior-form calculation; in
the latter case excitation during breakup substantially
alters the sum rule. Thus, our quaIitative description of
the reaction depends on the formalism used, an interesting
reversal of usual expectations.

The importance of excitation during breakup should be
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APPENDIX: ON THE LUT CRITIQUE
OF THE POST-FORM SUM RULE

[pb(r„)+a(FE z E„)n (r„)]
i
4„) . — (A 10')

Equation (A10') is understood to contain a convergence
factor for the coordinate r„, discussed in Sec. IIB of the
present paper, as is required in the post-form matrix ele-
ment. Omitting unnecessary coefficients, substitution of
(A10') in (A5) of LUT gives

Im(pb
~

(E+ H„) 'ipb)—
—.Im((an

i pb ) + (pb i
an )

+(an4g
i
JI„g E„ ian@g )) . —

(A6')

The methods of the present paper are easily applied to
examine the Appendix in which LUT criticize our previ-
ous papers: For example, from our analysis in Sec. III we
see that several surface integrals neglected by LUT indeed
make vanishing contributions. However, we find a serious
flaw in the discussion following their Eq. (A10). Intro-
ducing the standard DWBA replacement

qg(+ ) y(+ )y

Eq. (A10) takes the more explicit form
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The derivation of (A6') uses the algebraic reduction of a
product of many-body operators, as in the steps from (4.6)
to (4.11) of the present paper. The quantity in parentheses
would diverge if the convergence factor in (A10') were
omitted; on the other hand this quantity is real, hence its

imaginary part vanishes for all values of the convergence
parameter. Thus (A6') reduces to the previous post-form
sum rule of (A6) of LUT, in agreement with our papers.
There is no a-dependent ambiguity. Equation (A11) of
LUT and the discussion based on it are wrong.
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