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Abstract: Grazing-angle singles spectra for projectile fragments from nuclear collisions exhibit a broad 
peak centered near the beam velocity, suggesting that these observed fragments play only a 
"spectator" role in the reaction. Using only this spectator assumption (but not DWBA), we find 
that a "prior form" formulation of the reaction leads, via closure, to a (~klWlff)-type estimate of 
the inclusive spectator spectrum, thus relating it to the reaction cross section for the "participant" 
with the target. We show explicitly that this expression includes an improved multi-channel version 
of the Udagawa-Tamura formula for the "breakup-fusion" or incomplete-fusion cross section, and 
identifies it as the fluctuation part of the participant-target reaction cross section. 

A Glauber-type estimate of the distorted wave functions which enter clearly shows how the width 
of the peak in the spectator spectrum arises from the "Fermi motion" within the projectile, as in the 
simpler Serber model, but is modified by the "overlap geometry" of the collision. 

1. Introduction 

A class of nuclear reactions which has attracted considerable attention in recent 
years is that of projectile fragmentation, identified by the detection of at least one 
fragment of the projectile (" the spectator") near its grazing angle, where its spectrum 
is found to peak near the beam velocity. The simplest measurable aspect of the 
reaction, both experimentally and theoretically, is the inclusive or "singles" cross 
section, i.e. the determination of the energy and/or angular distribution of the 
spectator alone. Our purpose here is to provide an especially simple and direct 
formulation of the theory of this most elementary reaction, in order to correlate 
several previous treatments and to provide considerable insight into elaborate 
numerical calculations which have been performed within the DWBA model. 

In the notation which has become conventional, the reaction is described as 

a + A ~ b + x + A * = b + X ,  (1.1) 

indicating that only b is detected (thus including both bound and unbound states of 

* Supported in part by the CNPq, Brazil and the US NSF. 

124 



M.S. Hussein, If. W. McVoy / Inclusive projectile fragmentation 125 

X =  x + A). Although in general b could of course have interacted strongly with the 
target A, it is presumed, in those cases where its spectrum is found to peak near the 
beam velocity, to have played a passive or spectator role in the reaction. Employing 
this assumption, all models constructed to date have considered the reaction to be 
basically a collision of the "participant" x with A, in which b is indeed treated as a 
spectator, and permitted to scatter on A, if at all, only elastically. By far the simplest 
description possible is that of the Serber model 1), in which both the spectator and 
the incident projectile are described by plane waves. This leads to the appealingly 
simple on-shell formula 

d2o 
ox~l~a (qb) IEp ( g b ) ,  (1.2) 

d ~ b d E  b 

where o T is the total cross section for xA scattering, and I~a(qb)[ 2 is the momen- 
tum distribution of the x-b relative motion inside the projectile, evaluated at the 
momentum transfer qb tO b; P(Eb) is the final-state density for b. ]~a(qb)[ 2 peaks 

at qb = 0 (b remains at beam velocity), and in this simplified model it is entirely 
responsible for the energy and angular distribution of the spectator. As we shall see, 
this is the physical origin o f  these distributions even in a more realistic calculation, 
but they are substantially modified by the absorption which the plane-wave model of 
course omits. The appearance of the total x A  cross section means that all possible 
xA reactions are included, from elastic scattering to complete fusion (including what 
has been called "breakup-fusion"). 

The Serber model has met with modest success in explaining the shapes of 
forward-angle spectra, but considerably more realistic calculations are now avail- 
able. Aarts a) generalized the plane-wave approach to include Coulomb interactions 
(but not nuclear absorption) and compared it with his extensive coincidence as well 
as singles data, in addition to more accurate DWBA calculations. Friedman a) argues 
that the absorptive bA interaction requires the collision to be a fairly peripheral one, 
making it sensitive not to the entire interior of the projectile wave function 
~ a ( r b -  rx), but only to its surface region, and he finds an impressive correlation 
between the width of the quasi-free bump in d o / d E  b and the binding energy for the 
a -~ b + x breakup mode. For relativistic data, Hi~fner and Nemes 4) come to much 
the same conclusion within the limits of the Glauber approximation, employing 
closure to sum over the unobserved states of the xA system. 

The alternative theoretical approach which has been studied, for lower-energy 
data, is the DWBA (or DWIA), again a spectator approach and again using closure. 
Baur and collaborators 5-7) have performed an extensive series of DWBA calcula- 
tions for the breakup of light projectiles like deuterons and alphas. They employed 
the post form of DWBA, as well as a zero-range approximation for ~a(rb -- rx) and a 
surface approximation for x ( r  x - r A ) .  They were quite successful in fitting both 
singles and coincidence data, and in particular found that elastic breakup, in which 
A is left in its ground state, is generally a small component of the b-spectrum. 
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Finally, Udagawa et al. 8-10), considering what they designate as a "breakup fusion" 
reaction, have been able to write the cross section for observing the spectator particle 
in the appealing form 

d2o 
2( ~x+ )lWxA[~x+ ))P ( Eb ) /hVa (1.3) 

dg2bdE b 

in which they identify ~k~x +) as the wave function for x-A relative motion, after the 
a ~ x + b breakup. They find this result to produce a fairly acceptable fit to E b 
spectra for fighter heavy ions, at the upper ends of the spectra, but in general to 
underestimate these spectra by as much as a factor of 10 at their lower ends. 

We conjecture that part of the reason for this underestimate is due to the 
constraint imposed by these authors that the projectile breakup occur before the xA 
interaction. In general these events could occur in either order, or simultaneously, 
and since there is no experimental way to distinguish the various orders, all should 
be summed over to obtain the singles b-spectrum. As we demonstrate below, if this 
is done, one obtains for the net b-spectrum (employing only the spectator approxi- 
mation, but no DWBA assumption) the similar but even simpler result for the "xA 
reaction cross section" (i.e. excluding elastic breakup) 

with 

d2OR 
d ~ b d g b  2(~x+)ll~VxAl~x+))P(Eb)/hVa, (1.4) 

/~(+)(rx) -- = (X(-)(rb) [qSa(rb - rx)X(+)(rb, rx)) ,  (1.5) 

employing Udagawa's notation that ( I ) implies integration only over the coordi- 
nates of particle b; X~ +) and X~ -) are optical wave functions for a and b scattering 
elastically from A, and ~a is the internal wave function for the projectile, p~+)(rx) 
thus clearly plays the role of an optical wave function for the elastic scattering of x 
(riding inside the projectile) on A, and 1~,~ is the imaginary part of the correspond- 
ing optical potential. (~II)VIt3) thus represents the reaction cross section for x on A. 
It contains ~a(rb -- rx), which is basically the source of the width in the E b spectrum, 
but it also contains the absorption of both x and b by A, in their optical wave 
functions. This can be made very explicit by employing a WKB approximation to 
these wave functions, to produce a very clear qualitative picture of the reaction, as 
we demonstrate below. 

2. Background on reaction cross sections 

Motivated by the form of Udagawa's result, eq. (3), we recall the familiar 
derivation of a similar expression for a reaction cross section from a simple 
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optical-potential Schr~Sdinger equation, written in the form 

h2 
- - -  v z ~  (+)  + ( V - i W )  +(+) = E ~  (+), (2.1) 

2m 

where we adhere to the customary convention of taking W(r)  positive to describe 
absorption. The usual wronskian manipulation with + and ~k* yields 

-hfj. dA = 2(q~(+)lWlq~(+)), (2.2) 

where the integral is over any surface surrounding the potential, in a region where 
the potential has vanished, and describes the net inward flux due to the absorption. 
Dividing it by the incident current I~k(+)]Zv0 = v0 (which defines the normalization of 
q,(+)) gives the familiar expression for the total reaction cross section 

o R = 2(qJ(+)lWIq~ (+))/hVo, (2.3) 

i.e. the reaction cross section out of a specific entrance channel is given by the 
expectation value of the imaginary part of the optical potential in that channel, 
calculated with the corresponding optical wave function in that entrance channel. 

It is almost possible to apply this expression, unchanged, to the three-body or 
fragmentation problem of eq. (1.1), and in any practical calculation that is doubtless 
what .one would do, using eq. (1.5) to provide the obvious definition of the "negative 
energy entrance channel" wave function, bx(rx). The fact that the spectator carries 
away a range of possible energies, however, requires certain care, which can best be 
seen by employing the Feshbach projection operator formalism. 

We consider the multi-channel problem in which the channels are defined by the 
states In) of the target, and choose the projection operators 

P = 10)(0l, Q = 1 - P ,  (2.4) 

so that Pq, is the elastic-channel projection of Lk, i.e. the optical-model wave 
function for this channel. 

As usual, the coupled equations are 

( E - HQQ)Qq/= VQvP~k, (2.5a) 

with solution 
1 

Q~ = E - HQQ VQvP~ (2.5b) 

(no incident wave in the Q-space), and 

( E - Hee ) P ~ = VpQQ~ 

1 

= VvQ E - HQQ + ie VQvV~' (2.6) 

giving the customary expression for the imaginary part of the optical potential in 
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( 1 ) 
- W e ( E ) = ~ ) )  I m ( O I V P O E - H Q o +  ie VQpIO) (0{, 

= =10)(01r~o8 ( e  - Hoe ) Vo~l 0) (01, (2.7) 

which will be non-zero at any energy where Q-channels are open. 
We now consider any reaction from P to Q. Considering the hamiltonian in the 

form noPpt--[- VQp for this purpose, where HoPpt is the above optical potential in 
channel P, its eigenfunction P~k (÷) is the "unper turbed wave" in this context 
(containing none of the reaction channels produced by VQp), so we write it as 
X~+)(r)10); this includes the full elastic optical distortion in the definition of the 
incident wave. Then if ~ky is any exact final state in the Q-space (we are going to 
sum over f by closure, and so need not restrict our considerations to DWBA final 
states), the net reaction cross section out of channel P is [using eq. (2.7)], 

El< J ro x'/,io> I e , -  eo) 
f 

2~" 

OR = ~O----O 

2~r 

hv  o 

2~r 

hv  o 

~ <X%+ )I<OIVpoI~->>< ~ -  >I S( E - Hoo ) VopIO> x%÷ )> 
f 

<X~+)(OIVpoS( E -  HoQ)VopIO>Ix~+)> 

= 2(X~+)IWplx(p +) ) /hv  o , (2.8) 

as we found via the simpler argument. Note that the closure sum was done within 
the Q-space. 

3. The spectator model for inclusive fragmentation 

Now consider the spectator model for "fragmentation", where by inclusive 
"f ragmentat ion"  we mean that a fragment of the projectile is observed, but we sum 
over all possible final states of the rest of the projectile interacting with the target. 
This includes "breakup",  in which both fragments escape, as well as total or 
incomplete fusion of x with the target. 

3.1. DIRECT REACTIONS ONLY 

We divide the possible xA reactions into two extremes, direct and compound (i.e. 
fluctuating). In the present section we consider only the direct reactions, meaning 
that the xA cross section (or, in the present context, the E b spectator spectrum) 
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exhibits no energy fluctuations; Udagawa and Tamura interpret this to mean no 
incomplete fusion. Mathematically it means that H ~  Q is real, like the above Hoe,  so 
that eq. (2.7) holds for the xA system. 

Like Udagawa et al., we find it most natural to write the (exact, not DWBA) 
matrix elements in the "prior" form, which considers the interaction causing the 
fragmentation to be the entrance-channel potential, 

VOj, = V~e + VbOA e. (3.1) 

If a given trajectory causes A to interact more strongly with x than with b, the 
resultant " t idal  force" can fragment the projectile. The reaction in this case is caused 
more by VxA than by VbA. In the limit that the VbA interaction (and final-state Vbx ) 
is neglected altogether, we have the b-spectator model. Of course, other trajectories 
can equally make x the spectator (and so leave it travelling forward at beam 
velocity); the basic assumption of the spectator model is that these two cases can be 
cleanly separated experimentally. 

Choosing b as the spectator means that we neglect QVbAP as far as the reaction is 
concerned. Its elastic scattering component is retained, however, by incorporating it 
into the optical model wave function X b(rb) USed to describe the outgoing spectator, 
which contains the important effect of nuclear absorption of b if the projectile 
impact parameter is too small. Xb should actually include the full effect of (x + A) 
(i.e. not just of A) on b, but if M A >> M x the distinction is not important. 

Thus the spectator-model matrix element in the prior (but non-DWBA) form is 

Tfi  = ( - )  ( - )  QP (+) (Xb ~f Igx~ [~baXa ff~o), (3.2) 

where X(~ +) is the optical-model wave function of the projectile, ~a its internal state 
and ~0 = I 0) the ground-state wave function for the target t. Within the spectator 
model, this matrix element is exact, for ~kt -) is the exact (and unknown) wave 
function for any state of the xA* system, including tt  the internal state of A. 

By slightly generalizing the Q-space of sect. 2 to include all states of xA, not just 
of A, the same manipulation gives, for the net reaction cross section out of the 

t Because of the spectator approximation employed for b, the final-state wave function X[-)~kt - )  is 
not  an  exact 3-body wave function. Consequently it has a finite overlap with states in which the projectile 
a has  been raised to an excited but  particle-stable state, and so (in common with any DWBA calculation) 
includes in our  "fragmentat ion" amplitude an admixture of projectile excitation amplitudes. At high 
bombard ing  energies, this overlap will be negligible, but  at energies low enough that the final-state relative 
velocities of  x and  b are comparable to their internal velocities in the a* bound states, the admixture could 
be serious. This is one of the factors determining the lowest energy at which this approach is reliable. 

t t  We should, of course, include internal wave functions for x and for particle-stable states of b, but  
they will be summed  over and so can be understood to be in ~kf. We also note [see e.g. ref. 11) for a careful 
discussion of rearrangement collisions] that the prior form requires T n = (~,tlVi[~i), with ( H -  Vi)q, i = 
Ei~b i - 
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entrance channel a, 

d Z o  dir 2¢r 
= - -  EITti[ 2 6 ( E  b + E f -  B a - -  Ei)P(Eb) 

d E b d f l  b hv~ f 

2~r 
= ~OaP(  Eb)<X(+'X(- '~f~iJa<OlVx~Q~( E i q- B a - g b - HQx~Q)VQx~']O > 

X""  . , ( - ) i v ( + ) \  
'~'aA b Aa  / 

2 
,= P( Eb)<X(a+)X(-)t~ball~VxA( Ei + Ba__ ( - ) t  (+)  Eb)l~,Xb Xa >, (3.3) 

hva 

where B a > 0 is the binding energy of x to b, and P ( E b ) =  g b k b / / ( 2 ~ r ) 3 h  2 is the 
asymptotic phase space density for b. I~,,A(E i + B ~ - E b )  is ,  by definition, the 
imaginary part of the xA optical potential appropriate to x entering in the wave 
function X~+)~, rather than as a simple distorted wave. This l ~  is of course 
experimentally inaccessible, but in a practical calculation one would assume, with 
Udagawa, that it could be approximated by the normal empirical xA optical 

potential, evaluated at E x = E i + B a - E b. 

If we now define "negative-energy entrance channel" wave functions for x as in 
sect. 1 t, 

~3(x+)(rx) - ( X ( b - ) ( r b ) [ ~ a ( r b  -- rx)x(~+)(rb, rx)>, (3.4) 

where the round bracket indicates integration over b-coordinates only, we have the 
advertised result, 

d 2 o  dir 2 
P( Eb)(~(~+)ll~vd~r( Ei + Ba-- Eb)l~+)). (3.5) 

d l2bdE b h% 
This has much the appearance of Udagawa's result, but is in fact very different. In 
particular it lacks the Green function factors (which he includes in b), the physical 
reason being that the l~x~ r of eq. (3.5) arises from flux loss into other open xA 
channels (hence the "direct" superscript), whereas Udagawa's WxA arises from closed 
xA channels, as we show explicitly in the next section. 

We recall that eq. (3.5) describes only reactions of the xA system but omits its 
elastic scattering, i.e. it is the cross section for inelastic fragmentation, omitting 
elastic fragmentation. An experimentally measured singles spectrum of course in- 
cludes both, so an estimate (perhaps in DWBA) of the elastic contribution should be 
included in any confrontation with experimental data; recent theoretical and experi- 
mental results 5-7) suggest, however, that elastic fragmentation is a factor of 5 or 
more smaller than the inelastic. 

In summary, eq. (3.5) is our central result. It is essentially " t rue  by definition", 
obtainable (within the spectator approximation) directly from the elementary eq. 
(1.3) by recognizing that eq. (1.3) is valid for any entrance channel. Eq. (3.5) employs 

* The completeness  sum in eq. (3.3) removes one of the r x integrations but  leaves both  r b integrations. 
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an entrance channel in which x enters bound to b. It therefore has a kinetic energy 

E x = E i - E b + B a, and indeed eq. (3.5) requires that we employ its optical potential 
evaluated at this energy, thus relating the E b spectrum directly to the motion of b 
within the projectile before the reaction. The inclusive reaction cross section of eq. 
(3.5) includes the processes computed by Baur etal. 5-7), but should be more 
accurate, in that it makes neither the DWBA approximation nor any further 
approximations like surface or zero-range estimates. 

3.2. FLUCTUATION IN THE (xA) CROSS SECTION: INCOMPLETE FUSION 

The method of derivation employed in obtaining eq. (3.5) was based on the 
assumption that the xA cross section contained no strong energy dependence 
(e.g. resonances or "fluctuations"). One might expect such fluctuations to occur if 
the xA interaction leads to the formation of a compound nucleus, and indeed 
Udagawa et al. 8-xo) assume that it is exactly these fluctuations (appearing here in 
the E b spectrum) which signal the fusion of x with A, i.e. what would be called 

" incomple te  fusion" or "breakup-fusion" in the present context. This identification 
of an xA fluctuation cross section with breakup-fusion seems quite plausible, and in 
any case, if such fluctuations are present, the inclusive cross section for detecting b 
becomes, upon energy-averaging, 

d20 d20 dir d20 fl 
- -  + ( 3 . 6 )  

dE2b d E  b df2b d E  b dl2b d E  b 

as we show by  generalizing our previous eq. (3.5) to include fluctuations. 
To  do so, the previous spectator model must be generalized to include the (xA) 

resonances, coming from closed channels which were previously neglected. Thus, we 
change our previous notation, which used Q = 1 - P to identify open xA channels 
different f rom the entrance channel. Instead let us write 

1 = p 0 + p '  + Q - P +  Q, (3.7) 

where Po is the entrance xA channel, p '  the other open xA channels and Q the 
closed xA channels. If we eliminate the closed channels, the effective hamiltonian in 
P (i.e. the effective coupled-channels hamiltonian matrix) is 

1 
H,( Ex) = H,,  + H, Q ex_ HoQHQ , 

Ex = Ei + B a - E b . (3.8) 

I f  we then eliminate p '  also, we obtain the effective one-channel hamiltonian in P0, 

1 
Hp°(Ex) -- HP°P° + Hvov' E x - p ' H p ( E x )  p' + ie Hv'P°" (3.9) 

It  will show the Q-space fluctuations, but if we average it (by E x ~ E x + iI), the 
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denominator  will contain exactly the coupled-channels optical hamiltonian, n o p t ( E ) ,  

which will be complex because of the fluctuations. 
We use the fact that the imaginary part of the remaining Green function can be 

written 12) 

1 
= G(+)%Im/H ~G(+) 

Im Ex _ Hop, + ie -~r)-~l~-~><~-)[c + v°Pt "--'--opt,--opt 

in which 

f-.,l"Yc / \Wc  I v,' t.aop t **p,Q 
[~//q><~q[ 

Dq 
HQ ~(+) p'~opt 

(3.10) 

( E  x - Hopt) Idp(+)> = 0 (3.11) 

defines the coupled-channel optical wave functions, 

( E  x - nQo)l~q> = 0 (3.12) 

defines the closed-channel resonant states, and the average in the second term of 
(3.10) is over these q-states; Gop t is the coupled-channel optical (matrix) Green 
function in p'.  From this we recognize 

l%~q><l~q] 
--~np,Q Oq HOp' = Wpn" ( 3 . 1 3 )  

as the absorptive part of the open-channel optical hamiltonian matrix in p', which is 
generally assumed 12) to be diagonal, 

W,.,n, = 8,,,l.Vf , (3.14) 

so the implied double channel sum in (3.10) reduces to a single one. Hence we have 
directly the total imaginary part of the P0 channel optical potential, 

1 
= ~dir_~_ ~ f l  ( 3 . 1 5 )  - ImV v Vppo po po' 

po E x --  Hop t + ie 

the two terms coming from the two terms of eq. (3.10); in fact. l~Vp~ contains (from 
Hpopo ) a similar term from P0 directly to Q. If we define a n e w  aop  t t o  include all 
open channels, we can write [see also ref. n)] 

W.fl= VpoP[G(p+)°Pt]tWp[G(p+)°pt] Vppo, (3.16) 

in which the implied sums over the open channels in P show that W n comes from P0 
flux loss out of all open channels into Q, not just that out of the entrance channel. 
We remark in passing that eq. (3.5), with (3.16) for I~. n bears a close resemblance to po ~ 
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the formula obtained by Kasano and Ichimura 13) from post-form DWBA*. Though 
very similar in structure, their expressions and ours differ in containing the post and 
prior interaction potentials, respectively, as is to be expected from their different 
starting points. 

With the aid of eq. (3.16), a rather simple structure may be immediately obtained 
for d 2 o n / d f / d E b  of eq. (3.76). We first identify G~+)°ptVepol~tx +)) with the exact 
wave function in the P space and call it I~x+)). Using our assumption that W e is 
diagonal in the channels, and identifying (2/hVc)(~+)lW~l~ +)) with the fusion 
cross section o 3 from channel c, we can explicitly exhibit this intermediate-channel 
sum by writing the inclusive incomplete fusion cross sections from channel a in the 
form 

d2o n 0_ 
---- P(Eb)  E ""%~ct~e(Ei "k n a - Eb) , (3.17) 

dI~ d E--------~ cEP Oa 

where o ~  is the cross section for entering in xA channel a, coupling to c and fusing 
from c. We should mention at this point that the angular dependence of the inclusive 
fluctuating b cross section (incomplete fusion) is entirely contained in these angle- 
dependent xA fusion cross sections. This is made transparent with the aid of 
Glauber theory in the next section. 

In summary, eq. (3.5) for the inclusive spectator spectrum still holds, provided 
only that W dir is replaced by t~ "dir + 1~/n, which is in fact that imaginary part of the 
empirical optical potential in the xA entrance channel. If one wishes to decompose 
this inclusive spectrum into "direct" and "incomplete fusion" (break-up-fusion) 
parts, the latter does indeed give a term of the Udagawa-Tamura form. However [as 
pointed out in ref.12)], the 1~ "n which appears in the formula, as eq. (3.16) makes 
clear, is really a sum over the ff'c'S from all open channels. These are quantities 
which are more difficult to obtain than the single l~'p0, since they require fitting a 
complex channel optical matrix to the energy-averaged xA data. Our conclusion is 
that the U T  formula, if corrected as indicated above, is a possible means of 
calculating incomplete fusion (i.e. fluctuation) cross sections, but it requires optical 
parameters from all open channels. 

4. Further insight via Glauber distortion 

In spite of the appealing simplicity of eq. (3.5) (or its generalization), it does not 
display very explicitly the dependence of the E b spectrum on the zero-point internal 
motion of the projectile, nor the influence of absorption of x and b by the target. All 
these can be demonstrated very nicely by employing a WKB or Glauber approxima- 

t For a somewhat different form of the post-version expression see also N. Austern and C.M. Vincent, 
Phys. Rev. C23 (1981) 1847. The relation between post and prior expressions is discussed in greater detail 
by M. Ichimura, 1'4. Austern and C.M. Vincent, preprint, Univ. of Pittsburgh (1985). 
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Fig. 1. Straight-line trajectory at impact parameter b, for evaluating Glauber phase shift. 

tion to the optical wave functions for b and a. At sufficiently high energies, this 
should be quite accurate, but our purpose here is primarily to provide helpful insight 
into complex numerical computations. 

The Glauber approximation to an elastic-scattering distorted wave is* [jz ] 
X~+)(r)=x(k+)(z,b)=eik"exp +i A k ( z ' , b ) d z '  , 

- - 0 0  

the incident momentum k is taken to point along the positive z-axis, and b is the 
component of r perpendicular to z, assumed to vary little along a small-angle 
trajectory. The exponent of the second factor in X~ ÷) is the amount of (generally 
complex) Born approximation phase shift accumulated along the trajectory up to the 
point (z, b), with the integrand defined as 

k 
A k ( z ' , b ) -  U(z ,b) ,  (4.2) 

2E 
where - U ( r ) =  V(r)+ iW(r) is the optical potential. The customary optical phase 
shift, accumulated along the entire trajectory, is given by 

2(~(b)=f  ~ A k ( z ' , b ) d z ' =  2 f o ~ A k ( z ' , b ) d z  ', (4.3) 
o o  

and the partial-wave optical S-matrix element is 

S(b) = e 2 i ~ ( b )  . (4.4) 

The optical potential UaA is 

UaA = UbA + U×A, (4.5) 

and since the Glauber phase is linear in the potential, the phase shift for a composite 
particle is simply the sum of those for its components, each at its respective impact 
parameter, 

(~a(ba) = ~b(bb) d- (~x(bx), (4.6) 

* With the normalization indicated above eq. (2.3). 
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i.e. the Glauber distorted wave for the projectile is just 

X~ +)= exp[i(k x • rx+ k b ' r b ) ] e x p [ i f _ x  A k x ( z ' ,  bx) dz '  ] 

where we define 

135 

with 

× f d a r b e " " ~ S b A ( b b ) ¢ a ( r b  -- rx) ,  (4.9) 

q = qb = kb -- k~ (4.10) 

the average momentum transferred from b to A by elastic scattering. The depen- 
dence of the scattering amplitude on the energy and angle of the spectator thus 
appears explicitly in q, in the form of a Fourier transform of the product SbAePa . If 
SbA were not present (as in the plane-wave or Serber model), this would be just the 
Fourier transform ~a(q) of the internal wave function ~a(r) of the projectile, giving 
the spectrum in the form I~a(q)l z of the Serber model. 

The factor Sba(bb) modifies this, however, for it is small at small b b where b is 
strongly absorbed. The spectator is thus required to miss the target in order to avoid 
being absorbed. This will both reduce the magnitude of the cross section from that 
of the Serber model and also broaden the transverse momentum spectrum, by 
narrowing the range of the b b integration. The z b integration, on the other hand, is 
unaffected by SbA, SO, for a given r x, the longitudinal (i.e. grazing-angle) momentum 
spectrum, d a / d q j  I, will be the same as in the Serber model. However, r x values 
which cause the spectator to overlap the target are eliminated by absorption. The 
result is generally to permit only those z b integrations which pass through the 
surface region of ~a(r). This shows explicitly that d a / d q l  I is primarily sensitive to 
the surface parameters of ~a, rather than to its entire volume, in complete agreement 
with Friedman 3) and Hiifner and Nemes4). 

k x = ( m x / / m a ) k a ,  k b = ( m b / / m a ) k  a (4.8) 

as the average momenta of x and b in a. Substituting this and the analogous 
expression for X~b -) into eq. (3.4), we see that, within the spectator assumption, the 
two phase integrals for particle b combine to produce the net optical phase shift 
26bA(bb), whose exponential is SbA(bb), giving for the "entrance-channel wave 
function" 

~x(rx,q) = f d3rb(X~b-)*ldPa)X<a+)) 

= e i* , "xexp[ i f_~  A k x ( z ' ,  bx)dz']  

(4.7) 
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If we define the r b integral in eq. (4.9) to be 

then 

f d3rbe'q"bSbA(bb)~ba(rb -- Ix) - eiql, Zx~a,b(q ' bx), (4.11) 

05x[l)C'xAl~x) = f d2bxl~a,b(q' bx)l 2 

^ k X Zx 

- ~  [ 2Ex - ~  .1 

=E--2x f d2bxl~'a,b(q, bx)12[1-1SxA(bx)12] (4.12) 
kx 

using the fact that Glauber distortion neglects the difference between l'~'xA and WxA, 
and neglecting its energy dependence. Eq. (4.12) clearly has the form of an 
expansion in terms of partial waves of the participant x, so if we recall that the 
partial-wave xA reaction cross section is 

o~(bx)  = ~r ~2x (21x + 1)[1 -ISxA(bx)12, (4.13) 

and use/x  = bxkx and v x = va, then eqs. (3.5) and (4.12) yield 

d2OR 
P(Eb)  EoR( l x )Pa ,b (q ,  Ix), (4.14) 

dI2bdEb /x 

where 

1 2~r 
Pa,b(q, Ix) = ~ f0 d~lq'a'b(q' t x /G)12 '  (4.15) 

being the angle between q and ! x = kxb x. 
Eq. (4.14) is our final result, in the Glauber-distortion spectator model. The factor 

o ~  explicitly indicates that the reaction occurred because of a collision of A with x, 
leading to any possible final state different from the entrance channel. And it shows 
clearly that the momentum distribution arises from the zero-point relative motion 
("Fermi motion") of x and b within the projectile, which is broadened in the 
transverse direction by absorption of the spectator. In particular, if this absorption 
were absent (SbA ~--" 1), we would have Pa, b(q, Ix) ----I~'a(q)l 2, and 

d2aR 

dObdEb  ----- P(Eb)l~'~(q)12°~" (4.16) 

which is the original Serber model. 
Finally, if one is not interested in the momentum spectra of b, but only in the 

momentum-integrated cross sections giving relative abundances of various b's, one 
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I 1 - ~  2 _  

b 
Fig. 2. Schematic representation of the absorption factors of eq. (4.17), indicating how they limit the 

integration to the surface region of the target. 

sees from eqs. (4.9) and (4.12) that the total yield of fragment b is 

OE°R d3q= 2 (2~r )3 Ex ( d3ru d3r x f Yb 
J d~2 b dE-------~b Ca hk x .1 

XlSbA(bb) 12lePa(rb--rx)12[a--[SxA(bx)[2]. (4.17) 

This displays the "overlap geometry" of the reaction very dearly. It can be thought 
of as basically an integral over I~a(rb - rx)l 2, but with two absorption factors. As fig. 
2 indicates, one of them excludes small values for bb, and the other excludes large 
values of b X, exactly in accord with one's intuition. In fact the latter constraint, that 
the participant have some overlap with the target, is just the "fireball geometry" 
constraint; it is the basis of a recent model by Harvey and Homeyer15 ), which is 
remarkably successful in predicting relative cross sections for different spectators. 

The integrand of eq. (4.17) becomes particularly simple in the limit that the 
projectile is much smaller than the target. Replacing ~ba(r b -- rx) b y  8 ( r  b - rx) the r b 
integral sets b b = b x, so the remaining integrand becomes [SbA(bx)12[1 --]SxA(bx)[2], 
which clearly peaks at the surface of A. E.g. if SbA = SxA = [1-]-expfl]  -1, f l =  
(b - R ) /a ,  the integrand is just cosh2(½fl), very much like the parameterization Baur 
et aL 7) have found to be an accurate description of their DWBA amplitudes. 

5. Conclusion 
In a two-body scattering problem described by a complex potential, the reaction 

cross section out of any entrance channel c is given by the familiar expression 

2 
oR,¢= : - -  (5.1) 

nvc 

where - W~ is the imaginary part of the optical potential in channel c and q,~+) its 
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corresponding optical wave function.  In a three-body model of the projectile 
fragmentation reaction 

a + A ~ b + x + A * ,  (5.2) 

projectile-fragment spectra measured in certain regions of the final-state phase space 
(e.g. b near its grazing angle) strongly suggest that one of the two fragments, here 
taken as b, does not participate directly in the breakup. In this spectator model, the 
breakup is produced by A interacting in any possible way with x, but doing so only 
elastically with b. In this limit it is plausible that the inclusive "fragmentation-reac- 
tion" cross section, for producing a b, but summed over all xA final states which 
leave A in an excited state (including fusion), might be written in the analogous form 

d2OR 2 
- hVaO(Eb)(bxlWxAl~x), (5.3) dg2bdE b 

where I)VxA and ~b x are the absorptive xA potential and corresponding wave function 
for this peculiar xA entrance channel. We find that this is indeed the case, and hence 
suggest that this may provide a useful theoretical approach to the problem. The 
above cross section, however, excludes elastic fragmentation, in which the target 
remains in its ground state, so before comparing it to singles data for spectator 
particles, their elastic fragmentation cross section must be estimated (DWBA should 
suffice, since it is known to be small) and added to eq. (5.3). 

Considerable further insight can be gained by using a Glauber approximation to 
the distorted waves entering the problem, since it puts all particles on the energy 
shell. Within this further approximation the above cross section takes the very 
simple partial-wave form 

d2OR 
- -  -- p(  Eo) E o R  ( lx)Pa,b( q, Ix). (5.4) 
d~2bdEb lx 

Pa, b(q, Ix) is here the probability that the spectator has momentum k{, = k b + q 
within the projectile at the instant x is removed, provided this occurs when b misses 
the target and the xA relative angular momentum is lx; and oR(/x) is the xA 
reaction cross section at the same l x. If the absorption of the spectator by the target 
is neglected, Pa, b(q, lx) reduces to I~a(q)l 2, the square of the momentum-space 
internal wave function for the projectile, giving the Serber-model limit 

d2OR 
Iq, a( q)12o~O( Eb). (5.5) 

dg2bdE b 

Thus the Glauber-distortion approximation clearly illustrates the following gen- 
eral features of inclusive fragmentation: 

(i) The reaction occurs because x interacts with A; in a b-inclusive measurement, 
all final xA states must be included, not just the "breakup-fusion" ones. 
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(ii) The spectator must not be absorbed by the target. This requires that the 
longitudinal momentum spectrum of b come from the surface region of the pro- 
jectile, and broadens its transverse momentum spectrum. 

(iii) Although the absorptive effects of the bA and xA optical potentials are large, 
their refractive effects are minimal. The real part of the xA optical phase shift 
vanishes from [SxA(I)[ 2, and that of the A-potential appears in fix, but only where 
[SbA [ is small, suggesting a minimal effect. Both phases would presumably be much 
more important in less inclusive reactions. 
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