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Reexamining closed-form formulae for inclusive breakup:
Application to deuteron- and 6Li-induced reactions
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The problem of the calculation of inclusive breakup cross sections in nuclear reactions is reexamined. For
that purpose, the post-form theory proposed by Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985)] is
revisited, and an alternative derivation of the nonelastic breakup part of the inclusive breakup is presented, making
use of the coupled-channels optical theorem. Using the distorted-wave Born approximation (DWBA) version of
this model, several applications to deuteron and 6Li reactions are presented and compared with available data.
The validity of the zero-range approximation of the DWBA formula is also investigated by comparing zero-range
with full finite-range calculations.
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I. INTRODUCTION

The breakup of a nucleus into two or more fragments
is an important mechanism occurring in nuclear collisions,
particularly when one of the colliding nuclei is weakly bound.
The analysis of this kind of processes has provided useful
information on the structure of the broken nucleus, such as
binding energies, spectroscopic factors, and angular momen-
tum (e.g., [1,2]), and has contributed to the understanding of
the dynamics of the reactions among composite systems.

In the simplest scenario, in which the projectile is broken
up into two fragments, these processes can be schematically
represented as a + A → b + x + A, where a = b + x. From
the theoretical point of view, this problem is difficult to treat
because one has to deal with three-body final states. When
the state of the three outgoing fragments (b, x, and A) is
fully determined, the reaction is said to be exclusive. If,
in addition, the three particles are emitted in their ground
state, the corresponding cross section is referred to as elastic
breakup (EBU). In this case, the reaction can be treated
as an effective three-body problem interacting via some
effective two-body interactions. Although the rigorous formal
solution of this problem is given by the Faddeev formalism
[3,4], the difficulty of solving these equations has led to the
development of simpler approaches, such as the distorted-wave
Born approximation (DWBA) [5], the continuum-discretized
coupled-channels (CDCC) method [6], and a variety of
semiclassical approaches [7–10].

A more complicated situation occurs when the final state
of one or more fragments is not specified. In this case,
the reaction is said to be inclusive with respect to this
unobserved particle(s). This is the case of reactions of the form
a + A → b + B∗, where B∗ is any possible configuration of
the x + A system. This includes the breakup processes in
which x is elastically scattered by A, which corresponds to the
EBU defined above, but also breakup accompanied by target
excitation, particle(s) exchange between x and A, x transfer to
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A, and the fusion of x by A, which are globally referred to as
nonelastic breakup (NEB). The total inclusive breakup (TBU)
is therefore the sum of EBU and NEB components, i.e., TBU =
EBU + NEB. Measured observables usually correspond to
single- or double-differential cross sections with respect to
the angle and/or energy of b and hence include both EBU and
NEB contributions.

The evaluation of NEB cross sections are needed, for
example, in the calculation of total fusion cross sections in
reactions induced by weakly bound projectiles (e.g., 6Li, 7Li,
9Be). A significant fraction of the total fusion cross section
comes from incomplete fusion (ICF), in which only part of the
projectile fuses with the target, the other fragment surviving
after the collision [11]. Although many theoretical efforts
have been made to develop suitable models to calculated ICF
cross sections [12–14], the unambiguous calculation of CF
and ICF within a fully quantum mechanical model remains a
challenging problem [15,16]. Because the ICF is part of the
inclusive breakup, the study of inclusive breakup reactions
may lead, in turn, to a better understanding of ICF.

A related problem is that of the indirect determination of
neutron-induced cross sections on short-lived nuclei, from a
surrogate reaction which gives rise to the same compound
nucleus [17]. This is the case, for example, of the process
A(n,f ) (where f is a fission fragment), for which the surrogate
reaction A(d,pf ) may be used. To extract the cross section
for the former, one needs to know the fraction of protons
produced in the surrogate reaction, which are accompanied
by the formation of a n + A compound nucleus. Therefore,
the applicability of the method requires the separation of the
EBU component (which does not lead to compound-nucleus
formation) from the NEB (which contains the absorption cross
section).

The calculation of inclusive breakup observables is more
involved than that for the exclusive ones because they require
the inclusion of all the possible processes through which the
particle x can interact with the target A. Given the large
number of accessible states, this procedure is impractical in
most cases. As an alternative to this approach, one may try
to replace the physical final states with a set of representative
states (also named doorway states). These can be taken, for
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example, as the eigenstates of the x + A Hamiltonian in a
mean-field potential. As long as the basis used to describe
these final states is complete, one may argue that the sum
over these representative states should provide results close
to those obtained if the sum were done over the true physical
states. This procedure, referred to in some works as transfer
to the continuum method, has been used recently with success
to describe some inclusive breakup reactions of weakly bound
projectiles at Coulomb barrier energies, such as 208Pb(8Li, 7Li)
[18], 208Pb(6He, α) [19], and 120Sn(6He, α) [20]. However,
despite this relative success, this method is based on a heuristic
approach rather than on a rigorous formal theory. Lacking this
formal justification, it is not clear how these doorway states
should be chosen and how the final calculated cross sections
depend on this choice. Another drawback of this approach is
that it does not make it possible to separate the contributions
coming from EBU and NEB.

At intermediate energies (above ∼100 MeV/u), the prob-
lem can be greatly simplified using the adiabatic (fast
collision) and eikonal (forward scattering) approximations,
which makes it possible to obtain closed formulas of the
inclusive process in terms of the absorption and survival
probabilities of the unobserved particle as a function of the
impact parameter. This approach has been used extensively
in the analysis of nucleon removal (knockout) experiments at
intermediate energies, in which typically the removed particle
is not observed and only the momentum distributions of
the residual core is measured (see, e.g., Refs. [21,22], and
references therein). These models, however, cannot be applied
to low incident energies (a few MeV/u) and when the energy
or momentum transfer is large.

The problem of the calculation of inclusive breakup cross
sections is nevertheless not new. This problem was studied
in detail by some groups since the late 1970s, and several
theories were proposed and applied. The aim of these theories
was to derive closed-form formulas, in which the sum over
final states of the x + A system is formally reduced to some
expectation value of the imaginary part of the x + A optical
potential. In the pioneering works by Baur and coworkers
[23–25], the sum is done making use of unitarity and a surface
approximation of the form factors of excited states of the
residual nucleus. These two approximations were avoided in
later works by Udagawa and Tamura [26,27], who used a
prior-form DWBA formalism, and by Austern and Vincent
[28], who used the post-form DWBA. The latter was refined
by Kasano and Ichimura [29], who found a formal separation
between the EBU and the NEB contributions. These results
were carefully reviewed by Ichimura, Austern, and Vincent
[30] and the model was subsequently referred to as the IAV
formalism. Later on, Austern et al. reformulated this theory
within a more complete three-body model [6].

It is worth noting that the prior-form model of Udagawa and
Tamura (UT), on one side, and the post-form DWBA model of
Austern and Vincent (AV), on the other side, although formally
similar, give different predictions for the NEB part. This led to
a long-standing dispute between these two groups, which was
finally settled in the IAV work [30], where it was demonstrated
that a proper derivation of the prior-form formula gives rise to
additional terms not considered by UT.

Although the comparison of these theories with experimen-
tal data showed very encouraging results, they have apparently
fallen into disuse. Moreover, some of these theories, such as
the three-body model of Austern, has never been tested, to our
knowledge, probably owing to the computational limitations
at that time. This is in contrast to the experimental situation,
in which inclusive breakup measurements are used for many
applications, with both stable and unstable beams. Therefore,
it seems timely to reexamine these theories and study their
applicability to problems of current interest.

The revival and increasing interest on this problem is
evidenced by two recent theoretical works on this subject
[31,32]. Both of them use the IAV model in DWBA. In
Ref. [31], the authors use the zero-range post-form of this
model, whereas in Ref. [32] the finite-range prior-form version
of the model is used instead. Both of them apply the method
to deuteron-induced reactions, with encouraging results.

In this paper, we revisit also the IAV model, with special
emphasis on the calculation of the NEB part, for which we
provide a new derivation. We have implemented the DWBA
version of this model both in zero range and in exact finite
range. To assess the validity of this theory, we have performed
calculations for several reactions induced by deuterons and,
for the first time, the method is applied to 6Li scattering. In
both cases, we compare with available data.

The paper is organized as follows. In Sec. II we give a short
overview of the theory, including a new derivation of the NEB
formula within the IAV model. In Sec. III, the formalism is
applied to several inclusive reactions induced by deuterons and
6Li. Finally, in Sec. IV we summarize the main results of this
work and outline some future developments.

II. THE ICHIMURA, AUSTERN, VINCENT MODEL

In this section we briefly review the model of Ichimura,
Austern, and Vincent [6,30]. The final formula obtained in this
model has been derived in different ways. Here, we closely
follow the early derivation done by AV [28] because it provides
an interesting physical insight.

We write the process under study as

a(=b + x) + A → b + B∗. (1)

This process is described with the Hamiltonian

H = K + Vbx + UbA(�rbA) + HA(ξ ) + VxA(ξ,�rx), (2)

where K is the total kinetic energy operator, Vbx is the
interaction binding the two clusters b and x in the projectile
a, HA(ξ ) is the Hamiltonian of the target nucleus (with
ξ denoting its internal coordinates), and VxA and UbA are
the fragment-target interactions. The relevant coordinates are
depicted in Fig. 1. Note that the coordinate �rb connects particle
b with the center of mass (c.m.) of the x + A system.

In writing the Hamiltonian of the system in the form (2) we
make a clear distinction between the two cluster constituents;
the interaction of the fragment b, the one that is assumed to
be detected in the experiment, is described with an optical
potential. Nonelastic processes arising from this interaction
(e.g., target excitation) are included only effectively through
UbA. Particle b is said to act as spectator. However, the
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FIG. 1. Coordinates used in the breakup reaction.

interaction of the particle x with the target retains the
dependence of the target degrees of freedom (ξ ).

Within the assumed three-body model, and using the post-
form representation, the total wave function of the system can
be written in integral form as

�(ξ,�rx,�rb) = [E+ − Kb − UbB − HB]−1

× Vpost�(ξ,�rx,�rb), (3)

where E+ = E + iε, ε → 0, UbB is an auxiliary (and, in
principle, arbitrary) potential between b and the composite
B, Vpost ≡ Vbx + UbA − UbB , and HB is the Hamiltonian of
the x + A pair, given by

HB(ξ,�rx) = HA(ξ ) + Kx + VxA(ξ,�rx). (4)

The eigenstates of the target Hamiltonian are denoted as φc
A(ξ ),

i.e., [HA(ξA) − Ec
A]φc

A(ξ ) = 0, with c = 0 corresponding to
the target ground state, for which we assume E0

A = 0.
We consider now a specific final state of the detected particle

b, characterized by a given final momentum of this fragment
(�kb). The motion of b is described by a distorted wave with
momentum �kb, obtained as a solution of the single-channel
equation

[Kb + U
†
bB − Eb]χ (−)

b (�kb,�rb) = 0. (5)

The wave function describing the motion of x after the breakup,
denoted as Zx(ξ,�rx), can be obtained projecting the total wave
function [Eq. (3)] onto this particular state of the b particle;
i.e.,1

Zx(�kb,ξ,�rx) ≡ (χ (−)
b |�〉

= [E+ − Eb − HB]−1(χ (−)
b |Vpost|�〉, (6)

where the round bracket denotes integration over �rb only. The
last equation can be also written in differential form as

[E+ − Eb − HB]Zx(�kb,ξ,�rx) = (χ (−)
b |Vpost|�〉. (7)

1Note that this function also depends on �ka , which indicates the
direction of the incident beam. Because this direction is fixed, this
dependence is omitted for simplicity of the notation.

The source term of this equation involves the exact and hence
unknown wave function �, which, in actual calculations, must
be approximated by some calculable form. For example, in
DWBA, one assumes the factorized form

�(ξ,�rx,�rb) ≈ φ0
A(ξ )φa(�rbx)χ (+)

a (�ka,�ra), (8)

where φa(�rbx) is the projectile ground-state wave function and
χ (+)

a (�ka,�ra) is a distorted wave describing the a + A motion
in the incident channel. In practice, the latter is commonly
replaced with the solution of some optical potential describing
a + A elastic scattering. Austern et al. [6] proposed also the
three-body approximation

�(ξ,�rx,�rb) ≈ φ0
A(ξ )�3b(�rx,�rb), (9)

where �3b is a three-body wave function for the three
fragments (x + b + A) and contains, in addition to the b + x
ground state, contributions from b + x inelastic scattering and
breakup.

It is worth noting that, either in the approximation (8) or in
(9), the three-body wave function does not contain explicitly
excited states of A. Thus, in the IAV model, the NEB can
be viewed as a two-step process in which the first step is
the dissociation of the projectile, leaving the target in the
ground state, while the second step is the absorption of x
or the excitation of A.

A possible procedure to solve Eq. (7) is to expand the
function Zx in a complete set of x + A states, i.e.,

Zx(�kb,ξ,�rx) =
∑

c

ψc
x (�kb,�rx)φc

A(ξ ), (10)

where ψc
x (�kb,�rx) describes the x − A relative motion when the

target is in the state c. The expansion (10) can be inserted
into Eq. (7), giving rise to a set of coupled equations for the
unknown functions ψc

x (�kb,�rx).
This approach will be, in general, unpractical because

the expansion (10) involves a very large number of final
states. If one is not interested in the description of the
transition to specific x + A states, but rather in their summed
contribution, one can proceed as follows. Following Feshbach,
the Zx(�kb,ξ,�rx) function is decomposed as

Zx(�kb,ξ,�rx) = PZx + QZx, (11)

where P is the projector operator onto the target ground
state and Q = 1 − P . From Eq. (10) we see that PZx =
ψ0

x (�kb,�rx)φ0
A(ξ ). The function ψ0

x (�kb,�rx), which describes the
x + A relative motion when the target is in the ground state,
verifies the equation

(E+
x − Kx − Ux)ψ0

x (�kb,�rx) = ρ(�kb,�rx), (12)

where Ex = E − Eb, ρ(�kb,�rx) ≡ (χ (−)
b |Vbx |�〉 is the so-called

source term, and Ux is the formal optical model potential
describing x + A elastic scattering. Explicitly,

Ux = 〈
φ0

A

∣∣VxA + VxAQ[E+ − Eb − HQQ]−1VxA

∣∣φ0
A

〉
, (13)

where HQQ ≡ QHBQ. The formal potential Ux is a com-
plicated nonlocal, angular-, and energy-dependent object.
However, as done in two-body scattering problems, it can
be approximated by some energy-averaged (possibly local)
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potential or by some phenomenological representation (de-
noted Ux hereafter) with parameters adjusted to describe x + A
elastic scattering.

Note that Eq. (12) is formally analogous to the inhomo-
geneous equation appearing in DWBA and coupled-channel
Born approximation (CCBA) calculations between bound
states, as formulated in the source term method of Ascuitto
and Glendenning [33] and used by several coupled-channels
codes [34].

A. Separation of elastic and nonelastic breakup

In their original paper, AV provide only the total inclusive
cross section. Later, Kasano and Ichimura [29] showed that
this expression can be formally decomposed into two pieces,
corresponding to the EBU and NEB contributions.

Here we present an alternative derivation of these formulas,
which exploits the aforementioned analogy of Eq. (12) with
that found in the DWBA and CCBA formalisms. This equation
is to be solved with purely outgoing boundary conditions
(because there are no incoming waves in the x − A channel);
that is,

ψ0
x (�kb,�rx) → f (�kb,r̂x)

eikxrx

rx

. (14)

The function f (�kb,r̂x) depends on the angular part of �rx ,
in addition to the direction of �kb. Asymptotically, when
rx is large, the position vector �rx becomes parallel to the
momentum �kx and we may write f (�kb,r̂x) → f (�kb,�kx). We
therefore recognize f (�kb,�kx) as the scattering amplitude
for the EBU process, and its square is proportional to the
differential cross section for the detection of the x particle
in the direction of �kx and the b particle in the direction �kb.
To obtain this amplitude, one can proceed in two different
ways. One possibility is to integrate the differential equation
(12) and, at a sufficiently large distance (beyond the range
of the short-ranged potentials), equate the solution to the
asymptotic form (14), from which the scattering amplitude
can be obtained. A second approach to solve Eq. (12) is to
use integral (i.e., Green’s function) techniques. This gives a
closed-form expression for the scattering amplitude,

f (�kb,�kx) = − μx

2π�2
〈χ (−)

x χ
(−)
b |Vbx |�3b〉, (15)

where μx is the reduced mass of the x + A system and the
distorted wave χ (−)

x (�kx,�rx) is a solution of the homogeneous
part of Eq. (12), i.e.,

[Kx + U †
x − Ex]χ (−)

x (�kx,�rx) = 0, (16)

whose solution consists of a plane wave of momentum �kx plus
an ingoing spherical wave.

The corresponding differential cross section, for a fi-
nal differential volume in momentum space, is given by2

2Note that the factor (2π )4 of Ref. [35] is replaced here with a
(2π )−5 factor, consistent with our definition of the amplitude for the
plane waves as ei�k�r .

(cf., for instance, Eq. (5.36) of Ref. [35])

dσ = (2π )−5

�vi

∫
d�kxd�kbd�kAδ(Ef − Ei)δ( �Pf − �Pi)|Tf i |2,

(17)
where Tf i is the usual transition amplitude (or T matrix), which
is related to the scattering amplitude by f = −(μx/2π�2)Tf i .
In the c.m. frame, �Pi = 0. Also, the target momentum (�kA) is
not measured, so we can integrate over it, making use of the
momentum-conserving δ function,

dσ = (2π )−5

�vi

∫
d�kxd�kbδ(Ef − Ei)|Tf i |2. (18)

The element d�kb is conveniently expressed in terms of energy
and solid angle elements using d�kb = (2π )3ρb(Eb)d
bdEb,
where ρb(Eb) = kbμb/[(2π )3�2] is the density of states.3

Using this in Eq. (18),

dσ = (2π )−2

�vi

∫
δ(Ef − Ei)|Tf i |2ρb(Eb)d
bdEbd�kx. (19)

The double-differential cross section with respect to the energy
and the scattering angle of b is therefore given by

d2σ

d
bdEb

∣∣∣∣
EBU

= (2π )−2

�vi

ρb(Eb)
∫

δ(Ef − Ei)|Tf i |2d�kx,

(20)
which coincides with the result of Austern et al. (Eq. (8.15) of
Ref. [6]), noting that

∫
d�kx → (2π )3 ∑

�kx
.

Although it is not the purpose of the present work,
we note also that the previous expression can be used to
compute the fully exclusive cross section, with respect to
the angles and energies of b and x. For that, we use again
d�kx = (2π )3ρx(Ex)d
xdEx and use the energy-conserving δ
function, resulting in

d2σ

d
bdEbd
x

∣∣∣∣
EBU

= 2π

�vi

ρb(Eb)ρx(Ex)|Tf i |2. (21)

To obtain the expression for the NEB component, we
make use of the coupled-channels optical theorem recently
formulated by Cotanch [36]. This work generalizes the well-
known optical theorem to the multichannel case. If χi is the
channel wave function and Wi the diagonal imaginary part for
this channel, the contribution to the absorption in this particular
channel is given by [36]

σ i
abs = − 2

�vel

〈χi |Wi |χi〉, (22)

where vel is the projectile-target relative velocity in the incident
(elastic) channel.

We may use this result to calculate the NEB contribution
by noting that the latter is nothing but the absorption occurring

3These expressions result from N (k)d�kb = ρb(Eb)d
bdEb, where
N (k) is the number of states in the differential volume d�kb, which
is determined from 〈�k|�k′〉 = δ(�k − �k′)/N (k). In our case, 〈�k|�k〉 =
(2π )3δ(�k − �k′), and hence N (k) = (2π )−3.

044616-4



REEXAMINING CLOSED-FORM FORMULAE FOR . . . PHYSICAL REVIEW C 92, 044616 (2015)

in the x + A channel. The channel wave function is given by
ψ0

x (�kb,�rx), which is a solution of Eq. (12). Because Eq. (12)
corresponds to a definite energy and direction of the b particle,
we consider the differential cross section corresponding to a
range of the outgoing momenta of b,

d2σ = − 2

�vi

〈
ψ0

x

∣∣Wx

∣∣ψ0
x

〉
N (kb) d�kb, (23)

with Wx ≡ Im[Ux]. Transforming the element of momentum
into energy and solid angle elements, we get the double-
differential cross section

d2σ

dEbd
b

∣∣∣∣
NEB

= − 2

�vi

ρb(Eb)
〈
ψ0

x

∣∣Wx

∣∣ψ0
x

〉
. (24)

This result was obtained, by different arguments, by Kasano
and Ichimura [29]. A similar result was also obtained by
Hussein and McVoy [37]. The alternative derivation presented
here, based upon the generalized optical theorem, provides
a clear interpretation of this term, as the flux leaving the
x + A channel following the breakup of the projectile into
b + x.

To recapitulate, in the IAV model, the breakup can be
viewed as a two-step process. The first step corresponds to the
dissociation of the projectile (a) into the fragments b and x,
leaving the target in the ground state. The subsequent motion
of the participant particle (x) is described by the function
ψ0

x (�kb,�rx), which is the solution of the inhomogeneous
Eq. (12). This particle can then be scattered elastically by
the target or can interact nonelastically (for example, excite
the target or fuse with it). The former corresponds to the
EBU part of the inclusive breakup cross section, whereas these
nonelastic processes, corresponding to the second step in this
two-step picture, yield the NEB contribution. Quantitatively,
this contribution is obtained as the expectation value of Im[Ux]
in the state ψ0

x (�kb,�rx) [Eq. (24)]. Note that, because this
function depends on the final state of the spectator particle
(b), the NEB expression (24) yields the absorption for each
final state of b.

B. Practical implementation of the IAV model

The IAV formula for NEB breakup, Eq. (24), has a
deceptively simple form. The function ψ0

x must be first
calculated from the inhomogeneous Eq. (12), whose source
term contains the three-body wave function �3b, which is a
complicated object by itself. Furthermore, this equation must
be solved for each outgoing energy and angle of b covering
the range of interest.

For these reasons, practical implementations of this theory
have resorted to additional approximations. Standardly, all
these applications rely on the DWBA approximation of the
incident channel [that is, Eq. (8)], rather than on a three-body
model [Eq. (9)]. Even at the DWBA level, Eq. (12) is not
trivial. Usually, a partial wave decomposition of the scattering
waves appearing in Eq. (12) will be used and this means that
a large number of angular momenta for the a + A, x + A,
and b + B distorted waves will be required for convergence of
the calculated cross sections. In addition, the right-hand side
of this equation contains nonlocal kernels (similar to those

appearing in DWBA calculations between bound states, but
involving a larger number of angular momenta). Consequently,
in addition to the DWBA approximation, most of the existing
calculations of this kind have been done in the zero-range (ZR)
approximation.

To assess the validity of this approximation, we have
performed calculations with both the ZR and exact finite-
range (FR) formulas. The detailed formulas for the NEB
cross sections in these two approximations are given in the
Appendixes.

Other difficulties arising in solving Eq. (12) are the
well-known convergence problems of the post-form DWBA
formula when applied to breakup reactions. This is because
χ

(−)
b , being a scattering state, will be infinitely oscillatory

and the operator in the matrix element Vbx and the initial
state (ψa in DWBA) depend on the �rbx coordinate and
hence there is no natural cutoff in the �rb integration. As a
consequence, the source term has infinite range. To overcome
this problem, Huby and Mines [38] and Vincent [39] multiply
the source term by an exponential convergence factor that
damps the contribution of the integral at large distances.
Alternatively, following Vincent and Fortune [40], one may
use the integration in the complex plane. Here we adopt a
different procedure. Following Thompson [41], we consider
energy bins for the b distorted waves. For this, the scattering
states are first expanded in partial waves (see Appendix A),
and the radial coefficients, R�b

(rb,kb), are then averaged over
small energy or momentum intervals, i.e.,

R̄�b

(
rb,k

i
b

) = N

∫ ki
b+�kb/2

ki
b−�kb/2

dkbR�b
(rb,kb), (25)

where �kb is the bin width, ki
b is the central momentum of

the bin, and N is a normalization constant. The resulting bin
wave function is square integrable and thus leads to convergent
results when it is used in the source term of Eq. (12).

The formulas discussed in this section are applied to specific
cases in the following section.

III. CALCULATIONS

In this section, we present calculations for several reactions
induced by deuterons and 6Li projectiles and compare the
calculated inclusive cross sections with experimental data to
assess the validity of the theory. In all cases, we compute the
separate contributions for the elastic (EBU) and nonelastic
(NEB) breakup cross sections. For the former, we use the
CDCC formalism, using the coupled-channels code FRESCO

[34]. This makes it possible to treat the EBU to all orders
and should be equivalent to the post-form three-body model
of Austern et al. For the NEB part, we use the DWBA version
of Eq. (24). We have also tested the accuracy of the ZR
approximation in the NEB formula by comparing ZR with
FR calculations.

A. Application to (d, pX)

There is a large body of exclusive and inclusive breakup
data for deuteron-induced reactions. We have considered
the inclusive (d,pX) data for the reactions d + 93Nb at
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Ed = 25.2 MeV from Ref. [42] and d + 58Ni at 80 and
100 MeV from Refs. [43,44].

The data for d + 93Nb were already analyzed in Ref. [42],
using the so-called surface approximation, in Ref. [29], using
the ZR version of the post-form DWBA formula discussed
here, and in Ref. [32], using the prior form of the DWBA IAV
model. These calculations give a reasonable account of the
experimental data.

In the CDCC calculations [6] the deuteron breakup is
treated as inelastic excitations to the p-n continuum. This
continuum is truncated at a maximum excitation energy
and discretized in energy bins. For the present case, the
p-n states were included for � = 0–4 partial waves and
up to a maximum excitation energy of 20 MeV. For the
p-n interaction, we considered the simple Gaussian form of
Ref. [6]. The proton-target and neutron-target interactions
were adopted from the global parametrization of Koning
and Delaroche (KD) [45], omitting the spin-orbit term, and
evaluated at half of the deuteron incident energy. In the CDCC
method, the breakup cross sections are calculated in terms
of the c.m. scattering angle and excitation energy of the p-n
system. Therefore, to compare with the proton inclusive data,
these breakup cross sections must be converted to the proton
energy and scattering angle, making use of the appropriate
kinematical transformation. This was done with the formalism
and codes developed in Ref. [46]. For the NEB calculations,
we use also the KD parametrization for the proton-target and
neutron-target interactions, but evaluated at the corresponding
proton (Ep) and neutron (En) energies. In DWBA, one
needs also the incoming channel optical potential (d + 93Nb),
which was taken from Ref. [47]. For the ZR-DWBA calcu-
lations we used the ZR constant D0 = 125 MeV fm3/2 and
included the FR correction factor (see, e.g., Refs. [48,49] and
Appendix A).

In Fig. 2(a) we compare the experimental [42] and
calculated inclusive double-differential cross section, d2σ/

dEpd
p, corresponding to a proton energy of Ep = 14 MeV.
The dotted line is the EBU calculation (CDCC), which is
found to underestimate the data at all angles. The thin solid
line is the FR-DWBA calculation for the NEB part (see
Appendix B). The thick solid line is the sum of the EBU
and NEB contributions. Except at very large angles, it is found
to explain satisfactorily the data. It is seen that, except for
the smallest angles, the inclusive breakup cross section is
largely dominated by the NEB contribution. Our results are
consistent with those reported in Refs. [29,42]. In Fig. 2(b), we
compare several approximations for the numerical evaluation
of the NEB cross section. The dotted line is the ZR-DWBA
calculation, including, nevertheless, the FR correction �(rx)
(see Appendix A). The dashed line is the FR-DWBA calcu-
lation, omitting the remnant term in the transition operator
(i.e., using Vpost ≈ Vpn). Finally, the solid line is the full
FR-DWBA calculation. We find that the ZR calculation (with
FR correction) provides a very accurate result in the present
reaction, thus supporting the validity of this approximation
in this case. Further, we see that the nonremnant term has a
very small effect and can be also safely ignored in the FR
calculation.
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FIG. 2. (Color online) (a) Experimental and calculated double-
differential cross section, as a function of the proton scattering angle,
for the protons emitted in the 93Nb(d,pX) reaction with an energy
of 14 MeV and a deuteron incident energy of Ed = 25.5 MeV. The
dotted, thin solid, and thick solid lines are the EBU (CDCC), the NEB
(FR-DWBA), and their incoherent sum, respectively. Experimental
data are from Ref. [42]. (b) NEB angular distribution calculated
with ZR-DWBA (dotted line), FR-DWBA without remnant (dashed
line), and full FR-DWBA (solid line). (c) Convergence of the NEB
calculation with respect to the bin width, �kb, used for the b distorted
waves. See text for details.

To obtain meaningful results, the calculated observables
must converge as the bin width �kb is progressively decreased
[cf. Eq. (25)]. This is verified in Fig. 2(c) for the present case,
where we show the calculated NEB angular distribution for
different values of �kb. Although the rate of convergence was
found to be small, it is seen that for �kb ≈ 0.02 fm−1 the
calculations are well converged for the full angular range. A
similar convergence study was done in the other calculations
presented below.

We present now the results for the 58Ni(d,pX) reaction at 80
and 100 MeV and compare with the data from Refs. [43,44].
These data have been also analyzed in Refs. [50–52], using
the CDCC method for the EBU part, and the semiclassical
Glauber approach for the NEB part. In our CDCC calculations,
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FIG. 3. (Color online) (a) Experimental and calculated angle-
integrated proton differential cross section, as a function of the
outgoing proton energy in the LAB frame, for the 58Ni(d,pX)
reaction at Ed = 80 MeV. The dotted and thin solid lines are the
EBU and NEB contributions, calculated with CDCC and FR-DWBA,
respectively. The dot-dashed line is the contribution coming from
preequilibrium and compound nucleus [50]. The thick solid line is the
incoherent sum of the three contributions. Experimental data are from
Ref. [43]. (b) Nonelastic breakup calculated with ZR-DWBA (dot-
ted), nonremnant FR-DWBA (dashed), and full FR-DWBA (solid)
formulas.

the proton-target and neutron-target interactions are obtained
again from the KD parametrization, and we employed the
same p-n interaction used in the d + 93Nb calculations. For
the p-n continuum we considered the partial waves � = 0–6,
and excitation energies up to 50 and 90 MeV for the data at
Ed = 80 MeV ad Ed = 100 MeV, respectively. For the NEB
calculations, the d +58 Ni potential was taken from Ref. [47].

In Fig. 3, we present the angle-integrated energy differential
cross section at Ed = 80 MeV (dσ/dEp). In Fig. 3(a), the
dotted and thin solid lines correspond to the EBU (CDCC) and
NEB (FR-DWBA) calculations. It is seen that the NEB con-
tribution is much larger than the EBU part. Both distributions
show a bell-shaped behavior, with a maximum around half of
the deuteron energy. However, it is observed that the sum of
these two contributions cannot explain the experimental yield
at small proton energies. As shown in Ref. [50], these low-
energy protons come mainly from compound nucleus followed
by evaporation and preequilibrium. Because these processes
are not accounted for by the present formalism, in this work
we have adopted the estimate done in Ref. [50] [dot-dashed
line in Fig. 3(a)]. The total inclusive cross section, including
this contribution (thick solid line) reproduces reasonably well

the shape and magnitude of the data. Note that protons
with energies larger than ∼74 MeV correspond to bound
states of the neutron-target system and they are associated
with a stripping mechanism. This contribution could be
accommodated in the present formalism solving Eq. (12) for
Ex < 0 and with boundary conditions appropriate for bound
states instead of outgoing boundary conditions. Further, for
high-lying bound excited states, where the density of levels
will be very high, one may use the ideas of Udagawa and
co-workers of extending the complex potential to negative
energies to describe the spreading of single-particle states
[53,54]. However, these extensions go beyond the scope of
the present work.

In Fig. 3(b), we compare different approximations for the
transition amplitude used in the NEB calculation, namely, ZR-
DWBA (dotted line), FR-DWBA with no remnant (dashed
line), and full FR-DWBA (solid line). As in the previous case,
the ZR-DWBA and FR-DWBA calculations agree very well
for proton energies around and above the maximum, although
some small differences are visible. The effect of the remnant
term is again found to be very small.

We finally present the results for the d + 58Ni reaction at
100 MeV. This is shown in Fig. 4, where the top panel contains
the experimental and calculated proton angular distributions
for protons detected at 50 MeV in the laboratory frame, and
the bottom panel shows the energy distribution for the protons
scattered at 8◦ in the laboratory frame. Again, it is seen that the
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FIG. 4. (Color online) Double-differential cross section of pro-
tons emitted in the 58Ni(d,pX) reaction at Ed = 100 MeV in the
laboratory frame. (a) Proton angular distribution for a fixed proton
energy of Ep = 50 MeV. (b) Energy distribution for protons emitted
at a laboratory angle of 8 ◦ (arrow in top panel). The meanings of the
lines are the same as in Fig. 3 and are also indicated by the labels.
Experimental data are from Ref. [44].
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inclusive breakup is dominated by the NEB contribution in the
full angular range, particularly at large scattering angles. As
in the 80-MeV case, both the EBU and the NEB contributions
exhibit bell-shaped distributions, with a maximum around
≈Ed/2. Note that the low-energy region is dominated by the
protons coming from compound nucleus and preequilibrium.
Except for some underestimation of the cross section at the
maximum, the agreement between the theory and the data is
rather satisfactory.

B. Application to (6Li, αX)

As a second example, we consider the α production
following the breakup of the weakly bound nucleus 6Li. The
understanding of the large α yields observed in reactions
with 6Li has been subject of many studies [57–65]. These
works have shown (see, e.g., Refs. [62,64]) that the total
exclusive cross sections (α + d and α + p) are much smaller
than the total α production cross section. Consequently, the
α inclusive cross sections are largely underestimated by
CDCC calculations. Furthermore, some of these works have
shown that the total fusion cross section of these reactions is
significantly enhanced owing to partial fusion of the projectile,
usually referred to as ICF [66]. The calculation of ICF cross
sections from a purely quantum mechanical framework is still
a challenging problem [66,67]. Because the ICF is part of the
NEB cross section, the inclusive breakup model considered
in this work might provide useful starting point to tackle this
problem. However, one has to bear in mind that the NEB
cross section will contain, in addition to ICF contributions,
other contributions, such as breakup accompanied by target
excitation, without absorption of any of the fragments. These
contributions should be subtracted from the total NEB cross
section to extract the ICF part. Work in this direction is in
progress and the results will be presented elsewhere. Here
we focus on the calculation of the total inclusive cross
sections.

For that purpose, we have considered the 6Li + 209Bi
reaction at several bombarding energies between 10 and
50 MeV, for which experimental data exist [57]. The nominal
Coulomb barrier for this system is around 30.1 MeV [11], so
these data cover energies below and above the barrier. The
6Li nucleus is treated in a two-cluster model (α + d). CDCC
calculations based on this model have been performed for
many 6Li-induced reactions. To reproduce the elastic data,
these calculations usually require a reduction of the imaginary
part of the fragment-target interactions [68–70]. In contrast,
four-body CDCC calculations, based on a more realistic
three-body model of 6Li (α + p + n), are able to describe the
elastic data for 6Li + 209Bi without any readjustment of these
potentials [71], thus suggesting that the need for a reduced
absorption is related to the limitations of this two-body model
for 6Li. Because the inclusive formulas considered in this
work are based on a two-body model of the projectile, we
perform our calculations with the α + d model and allow
for the same kind of renormalization prescribed in previous
works.

For that, we first study the elastic scattering within
the CDCC framework. These calculations include s-wave
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FIG. 5. (Color online) Elastic scattering of 6Li + 209Bi at differ-
ent incident energies. The solid and dashed lines are, respectively,
the CDCC calculation and the optical model calculation with the
optical potential from Ref. [55]. The experimental data are from
Ref. [56].

(Jπ = 1+), p-wave (Jπ = 0−, 1−, 2−), and d-wave (Jπ =
1+, 2+, 3+) continuum states. For the d wave, we make
a finer division of bins to describe the 6Li resonant
states at 2.186 MeV (Jπ = 3+), 4.31 MeV (Jπ = 2+), and
5.7 MeV (Jπ = 1+). For the α + d ground state we used
a Woods-Saxon well with V0 = 78.46 MeV, r0 = 1.15 fm,
and a = 0.7 fm [72]. We used a second Woods-Saxon
well to describe the p- and d-wave states with parameters
V0 = 80.0 MeV, r0 = 1.15 fm, and a = 0.7 fm and sup-
plemented with a spin-orbit term, with the usual Woods-
Saxon derivative form, and parameters Vso = 2.5 MeV, rso =
1.15 fm, and aso = 0.7 fm to place the d-wave resonances
correctly. The d-209Bi and α-209Bi optical potentials are taken
from Refs. [73,74], respectively. Consistently with previous
works, we find that these calculations tend to underestimate
the elastic data. We found that, by removing the surface part
of the d-209Bi imaginary potential, a good description of the
experimental elastic angular distributions is achieved. This
is shown in Fig. 5 by solid lines. For comparison, we have
included the optical model calculation using the potential
of Cook [55] (dashed lines). We note that this reduction of
the imaginary potential is consistent with the conclusions of
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FIG. 6. (Color online) Angular distribution of α particles pro-
duced in the reaction 6Li + 209Bi at the incident energies indicated
by the labels. The dotted, dashed, and solid lines correspond to
the EBU (CDCC), NEB (FR-DWBA), and their sum, respectively.
Experimental data are from Ref. [57].

Ref. [71], which points toward an effective suppression of
the deuteron breakup in 6Li scattering, compared to the free
deuteron scattering.

We discuss now the inclusive breakup cross sections
(6Li,αX). The EBU contribution was obtained from the CDCC
calculations discussed above. For the NEB calculations, we
used Eq. (24), in both the ZR and the FR-DWBA approx-
imations. We adopt the same optical potential of α/d +
209Bi as used in the CDCC calculations. For simplicity, the
deuteron and target spins are ignored (note that, in the CDCC
calculations, the inclusion of the deuteron spin is important to
place correctly the � = 2 resonances). The distorted waves for
the incoming channel are calculated with the optical potential
of Cook quoted above.

In Fig. 6, we compare the calculated and experimental
angular distributions of α particles, for several incident
energies of 6Li. The dotted and dashed lines are the EBU
(CDCC) and NEB (FR-DWBA) results. Except for the lowest
energies, the NEB is found to account for most of the inclusive
breakup cross section, in agreement with previous findings
[62,64]. The summed EBU + NEB cross sections (thick solid
lines) reproduce fairly well the shape and magnitude of the

data, both above and below the barrier. These results give
confidence in the possibility of extending the formulation of
the IAV theory to situations in which the unobserved particle
is a composite system.

At the most forward angles (where the α yield is never-
theless small) the EBU is found to be larger than the NEB
part. Using a semiclassical picture, this can be understood
by noting that these small angles will correspond to distant
trajectories. However, according to Eq. (24), the NEB is only
effective for distances within the range of the deuteron-target
imaginary potential, and, hence, it will be very small for
these distant trajectories. It is worth noting, however, that the
separation between EBU and NEB parts in the (6Li,αX) case
is less clear than in the (d,pX) case. In the present model,
the NEB is associated with the absorption produced by the
d+ target imaginary potential. If an empirical deuteron-target
potential is used, part of this absorption will be attributable to
the breakup of the deuteron into p + n. However, in a more
realistic description of 6Li in terms of α + p + n, the breakup
of 6Li into α + p + n (leaving the target in the ground state)
would actually correspond to EBU. Despite this ambiguity, we
believe that the sum of the two contributions, that is, the TBU
cross section, can be reasonably well estimated by the present
model, as supported by the comparison with the data.

We study now the validity of the ZR approximation
in the present reaction. This is shown in Fig. 7, where
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FIG. 7. (Color online) Angular distribution of α particles pro-
duced by NEB in the reaction 6Li + 209Bi at the incident energies of
(a) 24 MeV and (b) 38 MeV. The dotted, dashed, and solid lines are the
ZR-DWBA, FR-DWBA without remnant term, and full FR-DWBA
calculations, respectively.
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6Li on 209Bi as a function of the incident laboratory energy. The open
circles and the squares are the EBU (CDCC) and NEB (FR-DWBA)
contributions to the α inclusive cross section. The solid circles are the
reaction cross sections, obtained from the CDCC calculations. The
arrow indicates the nominal position of the Coulomb barrier.

we show the angular distribution of α particles produced
by NEB, calculated with different DWBA approximations,
and at two different energies, one below (24 MeV) and
one above (38 MeV) the barrier. The dotted, dashed, and
solid lines are the ZR-DWBA, FR-DWBA without remnant
term, and full FR-DWBA results, respectively. We see that
the ZR-DWBA calculations underestimate systematically the
FR-DWBA results by about ∼10%–20% and hence the validity
of the ZR approximation is more questionable than in the
deuteron case. Further, we find that the no-remnant FR-DWBA
calculation underestimates the full FR-DWBA result by about
∼30%–40%, indicating that the effect of the remnant term is
much more important than in the deuteron case, owning to the
strong Coulomb interaction and the difference of the geometry,
�rbA and �rb, caused by the valence particle.

Finally, we study the incident energy dependence of the
total α yield. This is shown in Fig. 8. The squares and the open
circles correspond, respectively, to the NEB (FR-DWBA) and
EBU (CDCC) contributions to the α production cross section.
At energies above the nominal Coulomb barrier (indicated by
the arrow) the NEB largely dominates the inclusive breakup.
Below the Coulomb barrier, both contributions become com-
parable. This can be again explained in classical terms, by
noting that, at these small energies, the distance of closest
approach will be relatively large, owing to the presence of
the Coulomb barrier and, therefore, the imaginary part of the
d + target potential (which is responsible for the NEB part)
will have little effect. We have included in the same plot the
total reaction cross sections, as extracted from the CDCC
calculations, which are found to be very close to the values
calculated with the Cook optical potential (not shown). It is
seen that, at energies below the Coulomb barrier, the reaction
cross section is almost exhausted by the (6Li,αX) TBU cross
section, whereas at energies above the Coulomb barrier other
processes beyond the breakup seem to be present (e.g., pure

target excitation, α absorption, complete fusion, etc.). A more
detailed analysis of these processes is under study and will be
presented elsewhere.

IV. SUMMARY AND CONCLUSIONS

In summary, we have addressed the problem of the calcu-
lation of inclusive breakup in reactions induced by weakly
bound projectiles. For that purpose, we have revisited the
model proposed by IAV in the 1980s [6,30]. We have presented
an alternative derivation of the NEB formula, based on a direct
application of the coupled-channels optical theorem, which
provides a transparent interpretation of the NEB as the part
of the flux that leaves the EBU channels to more complicated
configurations of the x + A system.

Using the DWBA version of this formula, for the NEB and
the CDCC framework, for the EBU part, we have performed
calculations for deuteron and 6Li reactions on several targets,
and at different energies, finding a satisfactory agreement with
the available inclusive breakup data in all the cases considered.
These calculations show that, except for the particles emitted
at small angles, most of the inclusive breakup corresponds to
NEB. We have also tested the validity of the ZR approximation
and the effect of the remnant term in the NEB calculation
by comparing with exact FR DWBA calculations. For the
studied deuteron reactions, the effect of the remnant term has
been found to be very small and the ZR calculation gives
a result very close to the full FR calculation. However, for
the 6Li + 209Bi reaction, FR effects become important and
should be therefore considered for a correct interpretation of
experimental data.

The good agreement between the calculated inclusive cross
sections and the data suggests that this approach could be
also useful to estimate the amount of ICF from the inclusive
breakup. This problem is of interest, for instance, in surrogate
nuclear-reaction studies [17]. The separation of complete from
ICF has been also pointed out to be essential for the extraction
of meaningful conclusions regarding the effect of breakup on
fusion [75]. To answer these problems in a quantitatively way,
one needs to extend the present model to disentangle the ICF
part from other NEB channels, such as transfer to bound states
or target excitation.

An interesting question that arises is how these results
depend on the incident energy, the mass of the target, and
the separation energy of the projectile. Further calculations
are in progress to answer these questions. In particular, in
the case of the scattering of very weakly bound projectiles
with heavy targets, there is evidence that the EBU component
can be dominant [76,77]. A proper understanding of these
reactions, however, may require going beyond the DWBA
approximation adopted here for the NEB calculations. For that,
the three-body model of Austern et al. may provide an adequate
framework and, hence, its implementation is currently under
investigation.
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APPENDIX A: NONELASTIC BREAKUP FORMULA IN
THE ZERO-RANGE APPROXIMATION

In DWBA, the source term of Eq. (12) can be written as

ρ(�kb,�rx) = (χ (−)
b |Vpost|χ (+)

a φa〉, (A1)

with Vpost ≡ Vbx + UbA − UbB and where we have omitted the
dependence on �ka for simplicity of the notation. The symbol
( | 〉 means that the integration is to be taken over all the
coordinates except the x-channel coordinate �rx . If the remnant
term UbA − UbB is small, φa(�rbx) corresponds to an s wave,
and Vbx is short ranged, the integral is dominated by the values
rbx ≈ 0 and can be evaluated in the ZR approximation, i.e.,

Vpostφa(�rbx) � Vbx(rbx)φa(�rbx) � D0δ(�rbx), (A2)

where D0 is the ZR constant. Using this approximation in
Eq. (A1) and including the so-called FR correction (see, for
instance, Sec. 6.14 of Ref. [49]), the source term results,

ρ(�kb,�rx) = D0χ
(−)∗
b (�kb,c�rx)χ (+)

a (�ka,�rx)�(rx), (A3)

where c = mA/(mA + mx) and �(rx) is the FR correction
factor.

Ignoring the internal spins of the colliding particles, the
distorted waves can be expanded as

χ (+)(�k,�r) = 4π

kr

∑
lm

ilRl(r)Ym
l (r̂)Ym∗

l (k̂). (A4)

For charged particles, the radial part is here assumed to include
the Coulomb phase, eiσl , where σl are the Coulomb phase
shifts.

Following Ref. [29], the source term is expanded in
spherical harmonics as

ρ(�kb,�rx) = 16π2

kakb

∑
lxmx

Y
mx

lx
(r̂x)

×
∑
la

∑
lb

ρ
la lb
lx

(rx)Yla lb
lxmx

(k̂a,k̂b), (A5)

with

ρ
lalb
lx

(rx) = D0

cr2
x

ila+lb (−1)lb
[

(2la + 1)(2lb + 1)

4π (2lx + 1)

]1/2

× 〈lalb00|lx0〉Rla (rx)Rlb (crx)�(rx) (A6)

and

Yla lb
lxmx

(k̂a,k̂b) =
∑
mamb

〈lalbmamb|lxmx〉Ymb∗
lb

(k̂b)Yma∗
la

(k̂a).

(A7)

The channel wave function ψ0
x (�kb,�rx) in Eq. (12) is also

expanded in spherical harmonics,

ψ0
x (�kb,�rx) = 16π2

kakb

1

rx

∑
lxmx

ψ0
lxmx

(rx,�ka,�kb)Ylxmx
(r̂x). (A8)

For convenience, ψ0
lxmx

(rx,�ka,�kb) is written as

ψ0
lxmx

(rx,�ka,�kb) =
∑
la

∑
lb

Rla lb
lx

(rx)Yla lb
lxmx

(k̂a,k̂b). (A9)

Inserting the expansions (A6) and (A9) into the inhomoge-
neous equation (12), one gets{

�2

2μx

[
d2

dr2
x

− lx(lx+1)

r2
x

]
−Ux + Ex

}
Rla lb

lx
(rx) = rx ρ

la lb
lx

(rx).

(A10)

For Ex > 0 (unbound x-A states), this equation is to be solved
with outgoing boundary conditions

Rla lb
lx

(rx) → −S
la,lb
lx

H
(+)
lx

(kxrx), (A11)

where H
(+)
lx

(kxrx) is a Coulomb outgoing wave and the

coefficients S
la,lb
lx

are the S-matrix elements.
Finally, the double-differential cross section of NEB with

ZR approximation results in[
d2σ

d
bdEb

]NEB

post

= 64πμaμb

�4k3
akb

∑
lxmx

Ilxmx
(�ka,�kb), (A12)

where

Ilxmx
(�ka,�kb) =

∫
drWx(rx)

∣∣∣∣∣∣
∑
la

∑
lb

Rla lb
lx

(rx)Yla lb
lxmx

(k̂a,k̂b)

∣∣∣∣∣∣
2

.

(A13)

APPENDIX B: NONELASTIC BREAKUP FORMULA IN
THE FINITE-RANGE APPROXIMATION

In the FR approximation, the source term (A1) is evaluated
exactly. Because all the relevant coordinates lie on the same
plane (see Fig. 1), one can express any coordinate in terms of
two independent vectors. So, for example, choosing �rx and �rb

as independent vectors, one may write

�rbx = q�rx − �rb and �ra = (1 − pq)�rx + p�rb (B1)

where p = mb/(mb + mx) and q = mA/(mA + mx). The pro-
jectile wave function, neglecting again its internal spin, can be
expressed as φa(�rbx) = (Rlbx

(rbx)/rbx)Ymbx

lbx
(r̂bx). Using this,

and the partial wave decomposition of the distorted waves, the
source term is written as

ρ
mbx

b (�kb,�rx) = 16π2

kakb

∑
lama

∑
lbmb

ila+lb (−1)lbYmb∗
lb

(k̂b)

× Y
ma∗
la

(k̂a)
∫

d �rbVpost
Rlb (rb)

rb

Y
mb

lb
(r̂b)

× Rla (ra)

ra

Y
ma

la
(r̂a)

Rlbx
(rbx)

rbx

Y
mbx

lbx
(r̂bx). (B2)
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To calculate this, we transform the spherical harmonics Y
ma

la
(r̂a) and Y

mbx

lbx
(r̂bx) into linear combinations of the spherical harmonics

Y
mb

lb
(r̂b) and Y

mx

lx
(r̂x). This is done by means of the Moshinsky solid-harmonic expansion [78],

Y
mbx

lbx
(r̂bx) =

√
4π

lbx∑
n=0

n∑
λ=−n

c(lbx,n)
(qrx)lbx−n(−rb)n

r
lbx

bx

Y
mbx−λ
lbx−n (r̂x)Yλ

n (r̂b)〈lbx − n,n,mbx − λ,λ|lbx,mbx〉, (B3)

Y
ma

la
(r̂a) =

√
4π

la∑
u=0

u∑
ν=−u

c(la,u)
(prb)la−u(1 − pq)u(rx)u

r
la
a

Y
ma−ν
la−u (r̂b)Y ν

u (r̂x)〈la − u,u,ma − ν,ν|la,ma〉, (B4)

where

c(x,y) =
{

(2x + 1)!

(2y + 1)![2(x − y) + 1]!

}1/2

. (B5)

Because the interaction Vpost is a scalar, we can perform the Legendre expansion

Vpost
Rla (ra)

(ra)la+1

Rlbx
(rbx)

(rbx)lbx+1
=

Tmax∑
T =0

(2T + 1)qT
la,lbx

(rb,rx)PT (z). (B6)

We note that, even if a FR treatment is made, in reactions of light projectiles on heavy targets (e.g., deuteron scattering on heavy
targets), the difference UbA − UbB , known as remnant term, can be neglected, and, thus, Vpost � Vbx . The limit Tmax is chosen
large enough to generate all the couplings for partial waves to be used. Here the argument z in the Legendre polynomials PT (z)
is the cosine of the angle between �rb and �rx . The radial kernels are explicitly given by

qT
la,lbx

(rb,rx) = 1

2

∫ 1

−1
Vpost

Rla (ra)

(ra)la+1

Rlbx
(rbx)

(rbx)lbx+1
PT (z)dz. (B7)

Finally, the source term results in

ρ
mbx

b (�kb,�rx) = 16π2

kakb

∑
lxmx

Y
mx

lx
(r̂x)

∑
la lb

∑
l

Yllxmxmbx

la lb
(k̂a,k̂b)ρlalb

llx
(rx), (B8)

with

Yllxmxmbx

la lb
(k̂a,k̂b) =

∑
mamb

Y
ma∗
la

(k̂a)Ymb∗
lb

(k̂b)〈lalbxmambx |lml〉〈llbmlmb|lxmx〉, (B9)

and

ρ
lalb
llx

(rx) =
∑
nu

∑
�a�b

∑
T

ila+lb (−1)lb+l+n+�b−�apla−u(qrx)lbx−n(rx)u(1 − pq)ul̂a − u ̂lbx − nn̂û

× l̂bx�̂a�̂bl̂a l̂bT̂ /l̂/l̂xc(lbx,n)c(la,u)〈u,lbx − n,00|�b0〉〈la − u,n,0,0|�a,0〉
× 〈�b,T ,0,0|lx,0〉〈�a,lb,0,0|T ,0〉(2l + 1)

×
⎧⎨
⎩

lbx l la
n �a la − u

lbx − n �b u

⎫⎬
⎭W (lx,�b,lb,�a; T ,l)

∫
drbRlb (rb)(rb)la−u+n+1qT

la,lbx
(rb,rx). (B10)

As in the ZR case, ψ0
x (�kb,�rx) can be expanded as

ψ0
x (�kb,�rx) = 16π2

kakb

r−1
x

∑
lxmx

Y
mx

lx
(r̂x)

∑
la lb

∑
l

Rla lb
llx

(rx)Yllxmxmbx

la lb
(k̂a,k̂b), (B11)

where the radial coefficients, Rla lb
llx

(rx), are solutions of the inhomogeneous equation
{

�2

2μx

[
d2

dr2
x

− lx(lx + 1)

r2
x

]
− Ux + Ex

}
Rla lb

llx
(rx) = rxρ

la lb
llx

(rx). (B12)

The boundary condition is the same as in the ZR case.
Finally, the double-differential cross section with FR post-form DWBA can be written as[

d2σ

d
bdEb

]NEB

post

= 64πμaμb

�4k3
akb

1

2lbx + 1

∑
lxmx

Imbx

lxmx
(�ka,�kb), (B13)
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with

Imbx

lxmx
(�ka,�kb) =

∫
drxWx(rx)

∣∣∣∣∣∣
∑
la lbl

Rla lb
llx

(rx)Yllxmxmbx

la lb
(k̂a,k̂b)

∣∣∣∣∣∣
2

. (B14)
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