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Lagrange-mesh R-matrix method for inhomogeneous equations
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The Lagrange-mesh R-matrix method is generalized to inhomogeneous equations. This method is numerically
stable and efficient. It can be directly used for transfer reactions with the formalism discussed by Ascuitto and
Glendenning [Phys. Rev. 181, 1396 (1969)] and for inclusive breakup reactions modeled by Ichimura, Austern,
and Vincent [Phys. Rev. C 32, 431 (1985)]. We first present a simple example to assess the method. Then the
application to the 93Nb(d, pX ) nonelastic breakup is discussed.
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I. INTRODUCTION

The R-matrix method is a powerful tool in quantum scat-
tering theory. It was first introduced by Wigner and Eisenbud
[1–3] in the late 1940s in the analysis of resonant nuclear
reactions. The resonances were described in terms of com-
pound states formed by the colliding nuclei, and contained in
an internal region of the configuration space.

At present, the main aim of the R-matrix theory is to
describe scattering states of interacting particles. The config-
uration space is divided into two regions. The R matrix, which
represents the complexity of the compound states, relates the
radial component of the wave function to its derivative at the
boundary of the internal region. In the external region, it is
assumed that the colliding nuclei are weakly interacting, and
hence the complexity of the collision process is represented
by the R matrix. In early works, the R matrix was represented
by a few parameters used to fit experimental data [4].

The other aspect of the R-matrix theory is that it provides
a simple and elegant way of solving the Schrödinger equation
[5]. It is especially competitive in coupled-channel problems
with large numbers of open channels [6], where the direct
integration may become unstable.

On the other hand, most of the scattering problems are
traditionally formulated in terms of the transition amplitude.
For transfer reactions (single- as well as multichannel prob-
lems), it has been shown by Ascuitto and Glendenning [7]
that, instead of using the transition amplitude, one can derive
the S matrix from an inhomogeneous equation describing the
scattering in the outgoing channels. The inhomogeneity is a
source term which describes the production of the residual
particle in the transfer process.

In addition, for the inclusive breakup of two-body pro-
jectiles, the nonelastic breakup part in which the participant
interacts nonelastically with the target can be computed by
the closed form formula suggested by Ichimura, Austern, and
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Vincent in the 1980s [8]. The relative wave function in the
subsystem is the solution of an inhomogeneous equation.

Different methods can be used to solve inhomogeneous
equations, such as the Green’s function [9] with Gauss-
Legendre quadrature, or the Numerov method [7]. Some
applications of the R-matrix method have been performed
in atomic physics [10]. There are two important factors to
consider when we compare these methods: the efficiency of
the solver and the difficulty of obtaining the source terms.
Normally the R-matrix and Green’s function methods require
less grid points than the Numerov method. This makes the
Green’s function and R-matrix methods more efficient when
the source term is complicated. For example, the R-matrix
and Green’s function methods only require the source term
at the quadrature points. However, for the Numerov method,
all points of a uniform mesh with a small step are needed.
Normally, the number of these points is much larger than
the number of quadrature points. Computing the source terms
for the R-matrix and Green’s function methods is therefore
much faster than in the Numerov method. Another advantage
of the R-matrix method is the possibility to include nonlocal
interactions.

Here, we focus on the R-matrix method on a Lagrange
mesh. Lagrange functions are based on orthogonal polynomi-
als, and make the calculation of matrix elements very simple
[11]. The method has been applied to several problems in
atomic as well as in nuclear physics. We extend this formalism
to solve inhomogeneous equations and apply it to nonelastic
breakup calculations.

The paper is organized as follows. In Sec. II, we present
the Lagrange mesh R-matrix method for solving the inhomo-
geneous equations. In Sec. III, the formalism is applied to
a simple analytical example, and to the nonelastic breakup
induced by a deuteron. Finally, we summarize the main results
in Sec. IV.

II. INHOMOGENEOUS EQUATIONS

In this section, we present the Lagrange-mesh R-matrix
method. In practice, the applications of inhomogeneous
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equations in nuclear physics are essentially in transfer reac-
tions and in nonelastic breakup reactions. For transfer reac-
tions, the final state is bound, and only a few inhomogeneous
equations need to be solved. However, for the nonelastic
breakup process, the final states lie on the continuum, and
thousands of inhomogeneous equations have to be solved.
This means that the Numerov method, which requires a lot
of mesh points, is not numerically favorable.

As the Green’s function method is widely used in nonelas-
tic breakup calculations, we present a short outline in the
framework of inhomogeneous equations.

A. The R-matrix method

An inhomogeneous Schrödinger equation in partial wave �

is written as

[T�(r) + U�(r) − E ]u�(r) = ρ�(r), (1)

with

T�(r) = − h̄2

2μ

(
d2

dr2
− �(� + 1)

r2

)
, (2)

where μ is the reduced mass, U�(r) is the effective interaction,
E is the center-of-mass energy and ρ�(r) is the source term.
We assume a single-channel problem for the sake of clarity.
The extension to multichannel systems is straightforward.

In the present work, we use the R-matrix method [4,5,12]
to determine the wave functions u�(r). The basic idea of the
R-matrix theory is to divide the space into an internal region
(with radius a) and an external region. The channel radius a
should be large enough so that the nuclear potential (short
range) is negligible.

For the region outside the channel radius a, the potential
U�(r) and the source term ρ�(r) tend to zero. The asymptotic
part of the radial wave function presents different forms
whether a source term is present or not. With a source term,
only outgoing wave are present; we have

uext
� (r) = −S�H+

� (η, kr), (3)

where S� is the S matrix and H+
� (η, kr) is an outgoing

Coulomb function [13] (k is the wave number and η is
the Sommerfeld parameter). For a homogeneous equation
[ρ�(r) = 0], the external wave function reads

uext
� (r) = i

2

[H−
� (η, kr) − S0

�H+
� (η, kr)

]
, (4)

where S0
� is the elastic scattering matrix.

In the internal region (r � a) the wave function is ex-
panded over a set of N basis functions ϕi(r) as

uint
� (r) =

N∑
i=1

c�
i ϕi(r), (5)

where the choice of function ϕi(r) will be discussed later.
Since these basis functions ϕi(r) are valid for r � a only,
matrix elements of the kinetic energy are not Hermitian. This
is addressed by introducing the Bloch operator

L = h̄2

2μ
δ(r − a)

(
d

dr
− B

r

)
, (6)

where B is a boundary parameter, taken here as B = 0. The
role of the Bloch operator is twofold: it ensures the hermiticity
of the Hamiltonian over the internal region and the continuity
of the derivative at the surface. Then, the Bloch-Schrödinger
equation equation reads, with a source term,

[T�(r) + U�(r) + L − E ]uint
� (r) = Luext

� (r) + ρ�(r), (7)

where Luext
� (r) takes a boundary form which will be discussed

later.
Inserting the expansion (5) into Eq. (7) provides coeffi-

cients c�
i as

c�
i =

∑
j

(
C−1

�

)
i j

[〈ϕ j |L
∣∣uext

�

〉 + 〈ϕ j |ρ�〉
]
, (8)

where matrix C� is given by

(C�)i j = 〈
ϕi|T� + U� + L − E |ϕ j

〉
, (9)

and where 〈ϕ j |L|uext
� 〉 takes the form

〈ϕ j |L
∣∣uext

�

〉 = h̄2

2μ
ϕ j (a)

duext
�

dr
. (10)

Let us define the R matrix as

R� = h̄2

2μa

∑
i j

ϕi(a)
(
C−1

�

)
i jϕ j (a). (11)

The continuity condition

uint
� (a) = uext

� (a) (12)

provides the S matrix for the inhomogeneous equation

S� =
∑

i j

(
C−1

�

)
i j〈ϕ j |ρ�〉ϕi(a)

kaRlH+
�

′(η, ka) − H+
� (η, ka)

, (13)

where the prime ′ denotes the derivative with respect to ka. For
the homogeneous equation, we get the well known expression
of the elastic S matrix,

S0
� = kaRlH−

�

′(η, ka) − H−
� (η, ka)

kaRlH+
�

′(η, ka) − H+
� (η, ka)

. (14)

The wave function in the internal region is easily determined
with coefficients (8). Although the R matrix and the Coulomb
functions do depend on the channel radius, the S matrices, as
well as the wave functions, should not depend on its value,
provided it is large enough so that the nuclear interaction and
the source term are negligible. These quantities should be also
insensitive to the number of basis functions N . In practice, N
is larger when the channel radius increases. The choice of the
channel radius therefore stems from a compromise: it must be
large enough to make sure that the R-matrix conditions are
satisfied, but as small as possible to reduce the number of
basis functions. The stability of the S matrix is a strong test
of the method. As shown in Ref. [5], an independent test is
also provided by the continuity of the derivative of the wave
function at the channel radius.
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B. Lagrange functions

There are different types of basis functions ϕi(r) used in the
literature [5]. For numerical simplicity, we choose Lagrange
functions [11], which are defined in the (0, a) interval as

ϕi(r) = (−1)N+i r

axi

√
axi(1 − xi )

PN (2r/a − 1)

r − axi
, (15)

where PN (x) is the Legendre polynomial of order N , and xi are
the zeros of

PN (2xi − 1) = 0. (16)

The regularization factor r/axi ensures the regular behavior of
the basis functions at the origin. These basis functions satisfy
the Lagrange conditions

ϕi(ax j ) = (aλi )
−1/2δi j, (17)

where λi are the weights of the Gauss-Legendre quadrature
corresponding to the (0, 1) interval.

If the matrix elements with basis functions (15) are com-
puted at the Gauss approximation of order N , consistent with
the N mesh points, their calculation is strongly simplified. At
this approximation, the overlap is given by

〈ϕi|ϕ j〉 =
∫ a

0
ϕi(r)ϕ j (r)dr ≈ δi j . (18)

For a local potential, the matrix elements can be reduced to

〈ϕi|U�|ϕ j〉 =
∫ a

0
ϕi(r)U�(r)ϕ j (r)dr ≈ U�(axi )δi j . (19)

Then the potential matrix elements are given by the values
of the potential at the mesh points. This can be extended to
nonlocal potentials as

〈ϕi|U�|ϕ j〉 =
∫ a

0
ϕi(r)U�(r, r′)ϕ j (r

′)dr dr′

≈ a
√

λiλ jU�(axi, ax j ). (20)

A matrix element of kinetic energy and Bloch operator, for
the case i = j, is given by

〈ϕi|T� + L|ϕi〉

= h̄2

2μ

(4N2 + 4N + 3)xi(1 − xi ) − 6xi + 1

3a2x2
i (1 − xi )2

+ h̄2

2μ

�(� + 1)

a2x2
i

, (21)

and, for i �= j, by

〈ϕi|T� + L|ϕ j〉 = h̄2

2μ

(−1)i+ j

a2[xix j (1 − xi )(1 − x j )]1/2

×
[

N2 + N + 1 + xi + x j − 2xix j

(xi − x j )2

− 1

1 − xi
− 1

1 − x j

]
. (22)

The overlap with the source function, which is needed in the
calculation of the S matrix (13), is given by

〈ϕ j |ρ�〉 =
∫ a

0
ϕ j (r)ρ�(r)dr ≈ √

aλ jρ�(ax j ). (23)

It should be noted that, by using a Lagrange mesh, the number
of basis functions N is also the number of points where the
source term needs to be computed.

C. Green’s function method

The inhomogeneous equation (1) can be also solved by the
Green’s function method with the following integration:

u�(r) = 2μ

h̄2k

∫ ∞

0
f�(r<)h(+)

� (r>)ρ�(r′)dr′, (24)

where r< stands for min{r, r′}, and r> for max{r, r′}. Func-
tions f� and h+

� are the irregular and regular solutions of the
homogeneous equations

[T�(r) + U�(r) − E ] f�(r) = 0,

[T�(r) + U�(r) − E ]h+
� (r) = 0. (25)

The regular solution f�(r) has the same boundary condition
as in elastic scattering, whereas h+

� (r) takes the boundary
condition

h+
� (kr)

r→∞−−−→ H+
� (kr). (26)

The Eqs. (25) can be solved by the Numerov method with
uniformly spaced grids. By interpolating the uniformly spaced
grids into Gauss-Legendre quadrature points with spline
method, Eq. (24) becomes

u�(axi ) ≈ 2μ

h̄2k

N∑
j=1

f�(ax<)h(+)
� (ax>)ρ�(ax j )aλ j, (27)

where x< and x> stand for min{xi, x j} and max{xi, x j}, respec-
tively. The S matrix can be obtained by applying Eq. (3) at the
channel radius. For the Green’s function method, we first use
the Numerov method to obtain f� and h+

� , and apply these
solutions into the integral equations. This makes the Green’s
function method less efficient than the Numerov method to
solve the inhomogeneous equations.

One should note that for both the R-matrix method and
the Green’s function method, only a few values of the source
term are required. However, for the Numerov method, uniform
points with a small step size of the source term are needed.

III. APPLICATIONS OF THE R-MATRIX METHOD

In this section, we apply the formalism to a simple, analyti-
cal example and to nonelastic breakup. Our goal is to illustrate
the theory for different cases and to compare the numerical
results with other techniques, such as the Green’s function
method. The simple example can be easily reproduced by the
reader.

A. Analytical example

Here we use an analytical example to investigate the R-
matrix method. We assume that the reduced mass of the
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system is μ = 929.4254 MeV and that the c.m. energy is
Ecm = 12.74 MeV. The particles interact through a potential
which is local. We choose a standard form of the potential,
which is defined as

U (r) = − Vr f (r, Rr, ar )

− iWv f (r, Rv, av ) − iWsg(r, Rs, as), (28)

with

f (r, Ri, ai ) = 1

/[
1 + exp

(
r − Ri

ai

)]
, (29)

and

g(r, Ri, ai ) = −4ai
d

dr
f (r, Ri, ai ). (30)

The parameters of the interaction are given by Vr = 77.3 MeV,
Rr = 5.21 fm, ar = 0.77 fm, Wv = 6.1 MeV, Rw = 6.03 fm,
aw = 0.47 fm, Ws = 8.4 MeV, Rs = 6.21 fm, and as = 0.77
fm. Here we ignore the Coulomb potential. This corresponds
to most physical applications involving inhomogeneous equa-
tions. The inclusion of Coulomb interaction does not affect
the final conclusions. In our example, we take the source term
ρ�(r) as

ρ�(r) = U (r) sin(r), (31)

which simulates the shape of realistic source terms. This will
be discussed in the next subsection.

We compare three different methods to solve this inhomo-
geneous equation: the Lagrange-mesh R-matrix method, the
Green’s function method with Gauss-Legendre quadrature,
and the Numerov algorithm. One should note that when the
maximum number of mesh points (quadrature points), N , is
fixed, the same positions of mesh points are used for both
R-matrix and Green’s function methods. For the Numerov
method, a small-step uniform mesh (0.05 fm) is used to ensure
the convergence.

In Fig. 1, we show the real part of the s-wave solution of the
inhomogeneous equation. The channel radius is set at a = 15
fm. A comparison of the R-matrix method and the Numerov
method is shown in the upper panel. It can be found that,
by increasing N , the R-matrix method agrees very well with
the Numerov method. A similar conclusion is drawn from
the lower panel where the Green’s function and Numerov
methods are compared. However, it can be seen that the
R-matrix method converges faster than the Green’s function
method. With a small number of mesh points, N = 20, the
R-matrix method provides accurate results, whereas for the
Green’s function method a small number of quadrature points
can only reproduce the asymptotic region. For the internal
part, one has to use a large number of quadrature points (at
least N = 80).

To investigate the numerical properties of the Lagrange
mesh R-matrix method, we show the absolute value of the S
matrix for the s wave. It is computed with different N values
and channel radii in Fig. 2. As expected, small values of the
channel radius a require small bases. For example, for a ≈ 10
fm, N = 20 fairly reproduces the correct S matrix, whereas,
for a = 20 fm, at least N = 30 is required.

Numerov
N=10
N=15
N=20
N=40
N=80

0 5 10 15
r (fm)

-2

-1

0

1

2

R
e 

u 0

-2

-1

0

1

2

R
e 

u 0

Numerov
N=10
N=15
N=20
N=40
N=80

R-matrix

Green’s Function

FIG. 1. Real part of the wave function u0(r) for the analytical
example of Sec. III A. The upper and lower panels display the R-
matrix and Green’s function results, respectively.

We also compare the efficiency of the three methods.
For that, we considered a large number of inhomogeneous
equations, and measured the CPU time with the current im-
plementation [14]. The results are shown in Fig. 3, in which
we take the Green’s function as unit. It can be seen that the
R-matrix method is the fastest one, about 6 times faster than
the Green’s function method. The Green’s function is the
slowest one, since one has to use the Numerov method to

10 15 20 25 30 35 40
a (fm)

0.2

0.4

0.6

0.8

1

|S
0|

N=20
N=30
N=40
N=80

FIG. 2. Absolute value of the s-wave S matrix with different
channel radii. At the scale of the figure, the curves with N = 40 and
N = 80 are superimposed.
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R-matrix

Green's function

Numerov 1.3x

1x

6.4x

FIG. 3. Comparison of the efficiency of the R-matrix, Green’s
function, and Numerov methods, taking the Green’s function method
as unit.

obtain the regular and irregular parts of the Green’s function.
The testing code can be found in Ref. [14].

B. 93Nb(d, pX ) nonelastic breakup

In the second example, we consider the inclusive breakup
reaction of deuterons on a 93Nb target in which only the
outgoing proton is detected. This reaction was analyzed in
detail in Ref. [15,16]. We can schematically write it as

d + 93Nb → p + (93Nb + n)∗, (32)

where notation ()∗ denotes any possible state of the 93Nb +n
system. This includes the elastic breakup (EBU) process, in
which both p and n scatter elastically from 93Nb, and hence
the latter is left in its ground state. The other contributors,
which we call globally nonelastic breakup (NEB), are those
in which n undergoes a nonelastic interaction with the target,
including n + 93Nb inelastic scattering and fusion.

Here we focus on solving the NEB part with the R-
matrix method. By using the three-body model proposed by
Ichimura, Austern, and Vincent (IAV) [8], the NEB cross
section is given by the closed-form formula

d2σ

dEpd	p

∣∣∣∣
NEB

= − 2

h̄vd
ρp(Ep)〈ϕn(
kp)| Im[Un]|ϕn(
kp)〉. (33)

In this definition, ρp(Ep) is the proton density of states, vd

is the velocity of the deuteron, Un is an optical potential

0 20 40 60 80 100
r (fm)

-6

-4

-2

0

2

4

6

ρ 0 
(M

eV
)

real
imaginary

FIG. 4. Real and imaginary parts of the source term function in
the 93Nb(d, pX ) reaction at Elab = 25.5 MeV for an outgoing proton
energy of 14 MeV, and for the partial wave set of �d = 8, �p = 6, and
�n = 8.

0 10 20 30 40 50
θ (deg)

0

5

10

15

20

25

30

d2 σ/
(d

E
pdΩ

) (
m

b/
(M

eV
 s

r)
)

a=40 fm
a=60 fm
a=80 fm
a=100 fm

93
Nb(d,pX)@Ed=25.5 MeV

E
c.m.

p  =14 MeV

FIG. 5. Sensitivity to the channel radius of the NEB double
differential 93Nb(d, pX ) cross section at Elab = 25.5 MeV for an
outgoing proton energy of 14 MeV.

describing the n + 93Nb elastic scattering, and ϕn(
kp, 
rn) is a
relative wave function describing the motion between n and
93Nb when a proton is scattered with momentum 
kp. This
function is obtained by solving the inhomogeneous equation

(En − Tn − Un)ϕn(
kp, 
rn) = 〈
rnχ
(−)
p |Vpost|�3b(+)〉, (34)

where En = E3b − Ep and Tn are the energy and kinetic energy
in the n-93Nb subsystem respectively, and E3b is the three-
body energy in the center-of-mass frame. In this definition,
χ (−)∗

p (
kp, 
rp) is the distorted wave describing the relative
motion between p and the n + 93Nb compound system (ob-
tained with some optical potential Up), Vpost is the post-form
transition operator and �3b(+) is the three-body scattering
wave function. It has been found that the distorted-wave Born
approximation (DWBA) wave function is a good approxima-
tion for the three-body wave function [16]. Therefore we take

�3b(+) ≈ �DWBA(+) = χdφd , (35)

where χd is the distorted wave describing the relative motion
between the projectile and the target, and φd is the bound-
state wave function of deuteron. The partial-wave expansion
of the above equations for nonelastic breakup can be found in
Refs. [15,17]. We adopt the same potentials.

We employ the Green’s function and R-matrix methods to
solve the inhomogeneous equation (34) in its equivalent prior
form. The relation between its post and prior forms can be
found in Refs. [18,19]. In Fig. 4, we show an example of the
source term for the partial waves �d = 8, �p = 6, and �n = 8
calculated by the prior form IAV model. It can be seen that
the source term function starts from zero, then oscillates, and
finally tends to zero again. This justifies the choice made in
the analytical example (31).

In addition, we note that this source term presents a long
range compared to the nuclear potential. A large channel
radius is therefore needed in the R-matrix calculation. To
verify this point, we show the comparison of NEB double-
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100

d2 σ/
(d

E
pdΩ

) (
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b/
(M
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r)
)

1

10

100
d2 σ/

(d
E

pdΩ
) (

m
b/

(M
eV

 s
r)

)

0 5 10
24

25

26

27

93
Nb(d,pX)@Ed=25.5 MeV

E
c.m.

p  =14 MeV

Green’s function

R-matrix

(a)

(b)

FIG. 6. Convergence of the nonelastic breakup double differen-
tial cross section of the 93Nb(d, pX ) reaction at Elab = 25.5 MeV for
an outgoing proton energy of 14 MeV. The calculations are done with
the Green’s function method (a) and with the R-matrix method (b).

differential cross cross sections computed by different channel
radii in Fig. 5. It can be seen that there are some differences at
small angles between a < 80 fm and a � 80 fm. This shows
that, to have a high accuracy at small angles, the long-range
source term needs a large channel radius.

In Fig. 6, we show a convergence test for the same reaction.
The calculations are done with a channel radius a = 80 fm,
where the calculated cross sections are converged. A clear
difference between N = 40 and N > 40 can be found for both
methods. In general, about (3–5) mesh points are needed for
each interval of length π/kn, where kn is the wave number of
the n − 93Nb subsystem. Then, the minimum mesh number
required by the R-matrix method for a given channel radius
a can be estimated by using the following relation: N ≈
(3–5)akn/π . In the present case, we have En = 8.7 MeV, and

π/kn ≈ 5 fm. The the simple relation gives N ≈ 48–80 for
a = 80 fm. On the other hand, the R-matrix method converges
much faster than the Green’s function method, and one cannot
see any difference in the cross sections when N � 60. As
we found in the analytical example, the convergence of the
Green’s function method is slow.

It should also be noted that the source term ρ(
rn) =
〈
rnχ

(−)
p |Vpost|�3b(+)〉 is the time-consuming part in the nu-

merical calculations using the partial wave method. For each
value of rn, one has to perform a transformation from the
incoming Jacobi coordinates, (n + p) + 93Nb, to the outgoing
Jacobi coordinates, (n + 93Nb)+p. In practice, this makes the
Numerov method time consuming, since it requires many grid
points. For the current application, 1600 points are needed by
using a step size of 0.05 fm, compared to 60 points used in the
R-matrix method. In addition, when the effective interaction
Un is nonlocal it is more natural to use the R-matrix method,
since the matrix elements of a nonlocal potential are trivial
[see Eq. (20)].

IV. SUMMARY

In summary we have addressed the problem of solving
inhomogeneous equations with the Lagrange-mesh R-matrix
method. For that purpose, we derived the Lagrange-mesh
R-matrix formulas for inhomogeneous equations and applied
them to solve an analytical example and compared the so-
lutions with Green’s function and Numerov methods. After
that, we also applied the formalism to the NEB of a deuteron
induced reaction. Our study shows that the Lagrange-mesh
R-matrix method is a fast and accurate technique for solving
inhomogeneous equations.

To compare the solution of the different methods, there are
two factors that need to be considered: the efficiency of the
solver and the difficulty of obtaining the source term. The
R-matrix is the most efficient tool regarding both aspects.
The present method can be easily extended to multichannel
problems. Also, for the long ranged source term, normally a
large bases is required. In this case, one can use propagation
techniques (see for example Ref. [12] and references therein)
to make the calculations faster.
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